版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、相关概念1.导数的概念:f(x)=。注意:(1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。(2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。2导数的几何意义函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x)处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x)处的切线的斜率是f(x)。相应地,切线方程为yy=f/(x)(xx)。3.导数的物理意义若物体运动的规律是s=s(t),那么该物体在时刻t的瞬间速度v=(t)。若物体运动的速度随时间的变化的规律是v=v(t),则该物体在时刻t的加速
2、度a=v(t)。二、导数的运算1基本函数的导数公式: (C为常数); ; ; .2导数的运算法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:(v0)。3.复合函数的导数形如y=f的函数称为复合函数。复合函数求导步骤:分解求导回代。法则:y|= y| u|或者.三、导数的应用1.函数的单调性与导数(1)设函数在某个区间(a,b)可导,如果,则在此区间上为增函数;如
3、果,则在此区间上为减函数。(2)如果在某区间内恒有,则为常数。2极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;3最值:在区间a,b上连续的函数f在a,b上必有最大值与最小值。但在开区间(a,b)内连续函数f(x)不一定有最大值,例如。(1)函数的最大值和最小值是一个整体性的概念,最大值必须是整个区间上所有函数值中的最大值,最小值必须在整个区间上所有函数值中的最小值。(2)函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附件的函数值得出来的。函数的极值可以有多有少
4、,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点处必定是极值。四、定积分1.概念设函数f(x)在区间a,b上连续,用分点ax0x1xi1xixnb把区间a,b等分成n个小区间,在每个小区间xi1,xi上取任一点i(i1,2,n)作和式In(i)x(其中x为小区间长度),把n即x0时,和式In的极限叫做函数f(x)在区间a,b上的定积分,记作:,即(i)x。这里,a与b分别叫做积分下限与积分上限,区间a,b叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。基本的积分公式:C;C(
5、mQ, m1);dxlnC;C;C;sinxC;cosxC(表中C均为常数)。2.定积分的性质(k为常数);(其中acb。3.定积分求曲边梯形面积由三条直线xa,xb(ab),x轴及一条曲线yf(x)(f(x)0)围成的曲边梯的面积。如果图形由曲线y1f1(x),y2f2(x)(不妨设f1(x)f2(x)0),及直线xa,xb(ab)围成,那么所求图形的面积SS曲边梯形AMNBS曲边梯形DMNC。4.牛顿布莱尼茨公式如果f(x)是区间a,b上的连续函数,并且F(x)=f(x),则【练习题】题型1:导数的基本运算【例1】 (1)求的导数;(2)求的导数;(3)求的导数;(4)求y=的导数;(5)
6、求y的导数。解析:(1),(2)先化简,(3)先使用三角公式进行化简.(4)y=;(5)yxy*(x)x)*()。题型2:导数的几何意义【例2】 已经曲线C:y=x3x+2和点A(1,2)。(1)求在点A处的切线方程?(2)求过点A的切线方程?(3)若曲线上一点Q处的切线恰好平行于直线y=11x1,则Q点坐标为 _,切线方程为_思考:导数不存在时,切线方程为什么?【例3】 (06安徽卷)若曲线的一条切线与直线垂直,则的方程为( )A B C D【例4】 (06全国II)过点(1,0)作抛物线的切线,则其中一条切线为( )(A) (B) (C) (D) 解析:(1)与直线垂直的直线为,即在某一点
7、的导数为4,而,所以在(1,1)处导数为4,此点的切线为,故选A;(2),设切点坐标为,则切线的斜率为2,且,于是切线方程为,因为点(1,0)在切线上,可解得0或4,代入可验正D正确,选D。题型3:借助导数处理单调性、极值和最值【例5】 (06江西卷)对于R上可导的任意函数f(x),若满足(x1)0,则必有( )Af(0)f(2)2f(1)【例6】 (06天津卷)函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点( )A1个 B2个 C3个 D 4个【例7】 (06全国卷I)已知函数。()设,讨论的单调性;()若对任意恒有,求的取值范围。解析:(1)依题意,当x1时,f
8、(x)0,函数f(x)在(1,)上是增函数;当x1时,f(x)0,f(x)在(,1)上是减函数,故f(x)当x1时取得最小值,即有f(0)f(1),f(2)f(1),故选C;(2)函数的定义域为开区间,导函数在内的图象如图所示,函数在开区间内有极小值的点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个,选A。(3):()f(x)的定义域为(,1)(1,+).对f(x)求导数得 f (x)= eax。()当a=2时, f (x)= e2x, f (x)在(,0), (0,1)和(1,+ )均大于0, 所以f(x)在(,1), (1,+).为增函数;()当0a0, f(x)在(,1)
9、, (1,+)为增函数.;()当a2时, 01, 令f (x)=0 ,解得x1= , x2= ;当x变化时, f (x)和f(x)的变化情况如下表: x(, )(,)(,1)(1,+)f (x)f(x)f(x)在(, ), (,1), (1,+)为增函数, f(x)在(,)为减函数。()()当0f(0)=1;()当a2时, 取x0= (0,1),则由()知 f(x0)1且eax1,得:f(x)= eax 1. 综上当且仅当a(,2时,对任意x(0,1)恒有f(x)1。【例8】 (06浙江卷)在区间上的最大值是( )(A)2 (B)0 (C)2 (D)4【例9】 (06山东卷)设函数f(x)= ()求f(x)的单调区间;()讨论f(x)的极值。解析:(1),令可得x0或2(2舍去),当1x0,当0x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 液压升降平台培训
- 轨道交通设备采购招标资料
- 通信设备安装工程协议
- 隧道清洗爬架租赁协议
- 环卫工人招聘合同样本
- 个人与企业分期付款合同2024年版3篇
- 青岛市仓储物流中心施工合同
- 驾校训练场模拟交通事故施工协议
- 城市供水取水许可管理办法
- 足球场合作足球训练租赁合同
- 民用无人机驾驶员训练手册
- 呼吸机相关性肺炎(VAP)预防指南
- 建设工程质量检测和建筑材料试验收费项目及标准指导性
- 连续型随即变量
- 危废培训心得(一)(3篇)
- GB/T 33718-2017企业合同信用指标指南
- 抱抱“暴暴”应对负面情绪 课件 高中心理健康
- 企业现场TPM推进与管理
- 口腔科器械的清洗消毒规程-段丽辉
- 人教版五年级数学上册《可能性》-说课课件
- 房产中介培训入门到精通课件
评论
0/150
提交评论