![多元函数积分_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-3/15/4cabb5bd-b2fe-4254-95c7-68ac9eb1f004/4cabb5bd-b2fe-4254-95c7-68ac9eb1f0041.gif)
![多元函数积分_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-3/15/4cabb5bd-b2fe-4254-95c7-68ac9eb1f004/4cabb5bd-b2fe-4254-95c7-68ac9eb1f0042.gif)
![多元函数积分_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-3/15/4cabb5bd-b2fe-4254-95c7-68ac9eb1f004/4cabb5bd-b2fe-4254-95c7-68ac9eb1f0043.gif)
![多元函数积分_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-3/15/4cabb5bd-b2fe-4254-95c7-68ac9eb1f004/4cabb5bd-b2fe-4254-95c7-68ac9eb1f0044.gif)
![多元函数积分_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-3/15/4cabb5bd-b2fe-4254-95c7-68ac9eb1f004/4cabb5bd-b2fe-4254-95c7-68ac9eb1f0045.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、多元函数积分1. 利用积分区域的对称性化简多元函数的积分1.1 利用积分区域的对称性化简多元函数的重积分题型一 计算积分区域具有对称性,被积函数具有奇偶性的重积分类型(一) 计算积分区域具有对称性、被积函数具有奇偶性的二重积分常用下述命题简化计算二重积分.命题1 若f(x,y)在积分区域D上连续,且D关于y轴(或x轴)对称,则(1)f(x,y)是D上关于x(或y)的奇函数时,有;(2)f(x,y)是D上关于x(或y)的偶函数时,有;其中D1是D落在y轴(或x轴)一侧的那一部分区域.命题2 若D关于x轴、y轴对称,D1为D中对应于x0,y0(或x0,y0)的部分,则命题3 设积分区域D对称于原点
2、,对称于原点的两部分记为D1和D2.(1)(2)命题4 积分区域D关于具有轮换对称性,则记D位于直线y=x上半部分区域为D1,则类型(二) 计算积分区域具有对称性,被积函数具有奇偶性的三重积分.常用下述命题简化具有上述性质的三重积分的计算.命题1若关于xOy平面对称,而1是对应于z0的部分,则若关于yOz平面(或zOx平面)对称,f关于x(或y)为奇函数或偶函数有类似结论.命题2 若关于xOy平面和xOz平面均对称(即关于x轴对称),而1为对应于z0,y0的部分,则若关于xOz平面和yOz平面均对称(即关于z轴对称),或者关于xOy平面和yOz平面均对称,那么也有类似结论.命题3 如果积分区域
3、关于三个坐标平面对称,而1是位于第一象限的部分,则命题4 若积分区域关于原点对称,且被积函数关于x,y,z为奇函数,即题型三 计算积分区域具有轮换对称性的三重积分命题5 如果积分区域关于变量x,y,z具有轮换对称性(即x换成y,y换成z,z换成x,其表达式不变),则.1.2 利用积分区域的对称性化简第一类曲线积分、曲面积分题型一 计算积分曲线(面)具有对称性的第一类曲线(面)积分类型(一) 计算积分曲线具有对称性的第一类曲线积分命题1.2.1 设曲线L关于y轴对称,则 其中L1是L在x0的那段曲线,即L1是L在y轴右侧的部分;若曲线L关于x轴对称,则有上述类似结论.命题1.2.2 设f(x,y
4、)在分段光滑曲线L上连续,若L关于原点对称,则 其中L1为L的右半平面或上半平面部分.类型(二) 计算积分曲面具有对称性的第一类曲面积分第一类曲面积分的奇偶对称性与三重积分类似,可利用下述命题简化计算.命题1.2.3 设积分曲面关于yOz对称,则 其中1是在yOz面的前侧部分.若关于另外两坐标面有对称性,则有类似结论.注意 不能把向xOy面上投影,因第一类曲面积分的投影域面积不能为0.题型二 计算平面积分曲线关于y=x对称的第一类曲线积分命题1.2.4 若L关于直线y=x对称,则.题型三 计算空间积分曲线具有轮换对称性的第一类曲线积分命题1.2.5 若曲线方程中的三变量x,y,z具有轮换对称性
5、,则.1.3 利用积分区域的对称性化简第二类曲线积分、曲面积分题型一 计算积分曲线具有对称性的第二类曲线积分第二类曲线积分的奇偶对称性与第一类曲线积分相反,有下述结论.命题1.3.1 设L为平面上分段光滑的定向曲线,P(x,y),Q(x,y)连续,(1)L关于y轴对称,L1是L在y轴右侧部分,则(2)L关于x轴对称,L1为L在x轴上侧部分,则(3)L关于原点对称,L1是L在y轴右侧或x轴上侧部分,则(4)L关于y=x对称,则即若L关于y=x对称,将x与y对调,则L关于直线y=x翻转,即L化为L.因而第二类曲线积分没有轮换对称性.题型二 计算积分曲面具有对称性的第二类曲面积分命题1.3.2 设关
6、于yOz面对称,则其中1是在yOz面的前侧部分.这里对坐标y和z的第二类曲面积分只能考虑关于yOz面的对称性,而不能考虑其他面,这一点也与第一类曲面积分不同.2. 交换积分次序及转换二次积分题型一 交换二次积分的积分次序直接例题,无讲解.题型二 转换二次积分转换二次积分是指将极坐标系(或直角坐标系)下的二次积分转换成直角坐标系(或极坐标系)下的二次积分.由极坐标系(或直角坐标系)下的二次积分的内外层积分限写出相应的二重积分区域D的极坐标(或直角坐标)表示,再确定该区域D在直角坐标系(或极坐标系)中的图形,然后配置积分限.3. 计算二重积分题型一 计算被积函数分区域给出的二重积分含绝对值符号、最
7、值符号max或min及含符号函数、取整函数的被积函数,实际上都是分区域给出的函数,计算其二重积分都需分块计算.题型二 计算圆域或部分圆域上的二重积分当积分区域的边界由圆弧、过原点的射线(段)组成,而且被积函数为或的形状时,常作坐标变换,利用极坐标系计算比较简单.为此,引进新变量r,得到用极坐标(r,)计算二重积分的公式: (其中rddr是极坐标系下的面积元素).用极坐标系计算的二重积分,就积分区域来说,常是圆域(或其一部分)、圆环域、扇形域等,可按其圆心所在位置分为下述六个类型(其中a,b,c均为常数).类型(一) 计算圆域x2+y2a上的二重积分.类型(二) 计算圆域x2+y22ax上的二重
8、积分.类型(三) 计算圆域x2+y2-2ax上的二重积分.类型(四) 计算圆域x2+y22ay上的二重积分.类型(五) 计算圆域x2+y2-2ay上的二重积分.类型(六) 计算圆域x2+y22ax+2by+c上的二重积分.4. 计算三重积分题型一 计算积分区域的边界方程均为一次的三重积分当积分区域主要由平面围成时,宜用直角坐标系计算,如果积分区域的边界方程中含某个坐标变量的方程只有两个,则可先对该坐标变量积分。题型二 计算积分区域为旋转体的三重积分可选用柱面坐标计算。特别当被积函数是两个变量的二次齐式时,常用柱面坐标计算。题型三 计算积分区域由球面或球面与锥面所围成的三重积分积分区域为球面或球
9、面与锥面所围成的三重积分,采用球面坐标系计算可以减少计算工作量,特别当被积函数为形如的形式时,常用球面坐标系计算三重积分。用球面坐标计算三重积分时,首先,应明确球面坐标变换,及其参数,几何意义;其次,要记住球面坐标变换后的体积元素为;最后,根据积分区域的几何形状及,的几何意义正确定出三重积分的积分限。本题型还可以选用柱面坐标及先二后一的方法进行计算。题型四 计算被积函数至少缺两个变量的三重积分法一 用先二后一法(截面法)计算当被积函数至少缺两个变量且平行于所缺两变量的坐标面的截面面积又易求时,可用下述公式将三重积分化为定积分求之。为方便计,设被积函数为f(x),则,其中z1,z2是向z轴投影而
10、得到的投影区间z1,z2的端点,而D(z)是用垂直于z轴(平行于xOy平面)的平面截所得的截面,如D(z)的面积易求出,则上述积分即可求出。易知当积分区域由椭球面、球面、柱面、圆锥面或旋转面等曲面或其一部分所围成时,相应截面D(x)或D(y)或D(z)为圆域,其面积S(x)或S(y)或S(z)易求出。如果被积函数又至少缺两个变量,可先对所缺的两个变量积分,用先二后一法计算其三重积分。法二 用重心计算公式求之当被积函数只有一个变量,而的体积又易求出,则可利用重心计算公式求其三重积分。题型五 计算易求出其截面区域上的二重积分的三重积分可用先二后一法计算。虽然这时界面区域上的二重积分不等于其面积,但
11、由于易求出其值,再计算一个单积分,该三重积分也就求出。这时对被积函数不可作要求。当截面为圆域或其一部分,被积函数又为型,常选用上法计算其三重积分,且常用极坐标计算其截面区域上的二重积分。因而当为旋转体时,其上的三重积分也可用上法求之。5. 计算曲线积分题型一 计算第一类平面曲线积分计算这类曲线积分的主要方法是根据积分曲线方程的类型(直角坐标、极坐标、参数方程),正确写出弧长元素ds的表达式,将第一类曲线积分转化为定积分(其下限必不超过上限)的计算。计算中要始终注意利用曲线方程化简被积函数(因为在积分过程中动点始终沿着曲线移动,从而其坐标满足曲线方程),这是计算曲线(面)积分特有的方法,因而可用
12、曲线方程化简被积函数。代换后归结为计算,而L的弧长是已知的或易求的。此外,还应注意曲线的对称性及被积函数的奇偶性和周期性和物质曲线的重心简化计算。注意 若曲线有对称性,虽然整个被积函数不一定关于x(或y)为奇、偶函数,但可进一步考察其某一部分是否具有奇偶性,尽量利用对称性简化计算。题型二 求解平面上与路径无关的第二类曲线积分有关问题类型(一) 判断(证明)平面曲线积分与路径无关,并求该积分定理5.1 满足下列四条件之一,则积分在L所围的区域D内与路径无关: (1)存在u(x,y)使得; (2)若D为单连通区域,且;(但若D不是单连通区域,在D内成立,不能证明在D内与路径无关) (3),l为D内
13、任一分段光滑闭曲线; (4)若D为有唯一奇点M0的复连通域,存在一条环绕M0的路径C,使。对于单连通区域D,为证Pdx+Qdy存在原函数u(x,y),使du=Pdx+Qdy常验证成立。若在单连通区域D内积分与路径无关,则可在D中选取特殊的路径计算,其中右端积分为终点变动的积分,通常取D中平行于坐标轴的折线路径计算,设(x0,y0)为D内任一点有,或.若找到了原函数u(x,y),则.类型(二) 求平面上与路径无关的第二类平面曲线积分被积式中的待定函数或常数在单连通区域内由或其他与积分路径无关的等价条件建立待定函数(或常数)所满足的微分方程,求解次微分方程即可确定所求函数(或常数).类型(三) 证
14、明Pdx+Qdy存在原函数u(x,y)并求出u(x,y).定理5.2 设P(x,y),Q(x,y)在区域D上连续,则在D内与路径无关的充要条件是在D内存在函数u(x,y)使.值得注意的是,定理5.2只要P,Q在区域D上连续,对区域D是单连通或复连通都成立.由该定理可知,讨论是否与路径无关与讨论Pdx+Qdy是否存在原函数是一回事.题型三 计算平面上与路径有关的第二类曲线积分虽然题型不同,计算第二类曲线积分方法有别,但将曲线L的方程代入被积式,化简被积函数,及利用各种对称性简化计算是计算第二类曲线积分的各种题型都采用的方法和技巧.类型(一) 计算平面上与路径有关的平面曲线积分求法一 用格林公式求
15、之由知,曲线积分与路径有关,因而不能改变其积分路径求积分,其值可用格林公式求之.该法是计算平面上第二类曲线积分的重要方法.常有以下三种情况:(1)曲线积分满足格林公式的各个条件,可使用该公式将曲线积分转化为二重积分求之.(2)曲线不封闭,添加辅助线(例如添加平行于坐标轴的直线段使之构成封闭曲线),然后用格林公式把求曲线积分转化为易求的二重积分及辅助线上的曲线积分.(3)L所围区域含P,Q不连续点时,设法使用格林公式.这时L所围区域为复连通区域,设法去掉P,Q不连续的点,常用下述各法求出其积分.方法一 将L的方程代入被积函数,有时可去掉其不连续的点.方法二 构造单连通区域D.常用抠除P,Q不连续
16、点的小(椭)圆与曲线L和其他曲线围成单连通区域D,再在D上使用格林公式.方法三 使用下述复连通域上的格林公式求之.命题5.1(复连通域上的格林公式) 设P(x,y),Q(x,y)在D内有一阶连续偏导数,且在D内处处成立.L1,L2是任意两条通向闭路径,且在各自所围的区域内有相同的不属于D的点(称为奇点或洞点),则.求法二 写出积分曲线的参数方程化为定积分计算计算与路径有关又不便使用格林公式的第二类曲线积分时,常写出其参数方程,化为定积分计算.题型四 计算空间第二类曲线积分计算沿空间闭合曲线的第二类曲线积分常用下述各法.法一 借助曲线的参数方程,化为定积分计算.法二 投影到坐标面上,化为平面上第
17、二类曲线积分计算.因第二类曲线积分是对坐标的曲线积分,dx,dy,dz是有向弧长元素在各坐标轴上的投影,可将空间曲线上的第二类曲线积分投影到坐标面上去计算.当曲线方程含一次方程时,常将一个变量用另外两个变量表示的式子代入被积式,被积函数就化成二元函数,积分曲线就向相应坐标面上投影,空间曲线积分就化为平面曲线积分.再用格林公式可化为二重积分计算.法三 用斯托克斯公式转化为曲面积分计算.特别当曲线封闭,且被积函数为x,y,z的一次或二次多项式,空间曲线所张成的曲面为平面片或为部分球面比较简单时常用此法求之.求时要注意由的定向按右手法则确定曲面的定向.特别当时,可选择特殊的积分路径求.使用上述三法计
18、算时,还应注意将曲线方程代入被积函数以化简被积式,空间第二类曲线积分对称性的情况同平面曲线第二类曲线积分类似,且同样要加以充分利用以化简计算.法四 当Pdx+Qdy+Rdz的原函数存在并易求时,通过求原函数求得曲线积分.6. 计算曲面积分题型一 计算第一类曲面积分类型(一) 计算与曲面外法线向量无关的第一类曲面积分这类曲面积分算法是将曲面积分化为投影区域上的二重积分,为此,需按下列步骤进行(1)确定曲面的方程,积分曲面的显式表示应当是单值函数,否则需将曲面分片,使分片后的各片曲面为单值函数;(2)由曲面的方程(例如z=z(x,y)算出曲面微元dS(例如);(3)由曲面方程及题中所指出的范围确定
19、曲面在相应的坐标面 (例如xOy平面)上的投影区域(例如Dxy),然后将的方程及dS的表达式代入被积式,且将积分区域变为投影区域,余下的就是计算二重积分.上述求解过程可归纳为一定(曲面的方程)、二求(曲面微元dS)、三代(将的方程及dS的表示式代入被积式)、四替换(将积分区域用投影区域替换)、五计算(二重积分).由于第一类曲面积分不考虑曲面的侧,利用对称性的情况与重积分类似,且解题中同样要充分利用,此外还可以利用物质曲面的重心简化计算.类型(二) 计算与曲面外法线向量有关的第一类曲面积分利用第一类与第二类曲面积分之间的关系,有时将第一类曲面积分转化为第二类曲面积分,再用高斯公式:,.或利用斯托
20、克斯公式化为第二类曲线积分计算.题型二 计算第二类曲面积分法一 化为投影区域上的二重积分计算以计算为例的计算步骤为(1)确定积分曲面的方程z=z(x,y)及其在xOy面上的投影区域Dxy,并确定曲面的侧是上侧还是下侧;(2)把曲面方程z=z(x,y)代入被积函数中,得到,若曲面是由方程z=z(x,y)所给出的曲面上侧,取正号,否则取负号.另外,两个积分及可类似计算.这样需将一个完整的积分向三个坐标面投影.如果曲面方程由z=z(x,y)给出,也可由下述命题,将三个坐标面上的积分转化为一个坐标面上的积分.此法常成为合一投影法.利用上述方法计算曲面积分时,仍需注意利用奇偶性、对称性简化计算.命题6.
21、1 若定曲面由方程z=z(x,y)给出,在xOy平面上的投影区域为Dxy,z(x,y)在Dxy上有连续的偏导数,P,Q,R在上连续,则其中正负号由的定向确定:法向量指向上侧取正号,否则取负号.若将投影到yOz或zOx平面可得类似计算公式.设曲面由方程z=z(x,y)给出,当取上侧时,有,而,故,即.于是,这样三个坐标面上的积分就转化为一个坐标面上的积分.同样,若曲面由方程x=x(y,z)或y=y(x,z)表示且将投影到yOz或zOx平面也可得到类似公式.一般地,如果曲面方程由z=z(x,y)给出较简单.例如,曲面为平面或为旋转抛物面等可用上述合一投影法求其上的第二类曲面积分.法二 使用高斯公式
22、求之高斯公式 设空间闭区域是由分片光滑的闭曲面所围成,函数P(x,y,z),Q(x,y,z),R(x,y,z)在区域上具有一阶连续偏导数,则有,或.这里是的外侧,cos,cos,cos是的外法向量的方向余弦.以上两式均为高斯公式.在以上两式中令P=x,Q=y,R=z即得,或.使用高斯公式计算第二类曲面积分有下述几种情况:(1)曲面积分满足高斯公式的多个条件(为封闭曲面,取外侧,P,Q,R在上有连续的一阶偏导数),利用该公式可把对坐标的曲面积分转化为三重积分计算.一般计算三重积分比计算对坐标的曲面积分容易.计算过程要注意使用曲面方程化简被积函数,使用奇偶对称性及曲面与坐标面的垂直性、物质立体(物质曲面)的重心等简化计算。(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纺织品运输保险合同优化
- 高铁站改造包清工合同模板
- 咖啡连锁项目转让居间合同
- 旅游度假村开发投资合同
- 桁架租赁合同
- 原油委托采购合同
- 国外进口水果销售合同
- 社会公益项目合同
- 二零二五版海洋运输货物保险合同风险评估与保险市场分析3篇
- 二零二五版纯劳务分包合同范本:高速公路养护合作协议3篇
- (新版)工业机器人系统操作员(三级)职业鉴定理论考试题库(含答案)
- 教育环境分析报告
- 人力资源服务公司章程
- (正式版)CB∕T 4552-2024 船舶行业企业安全生产文件编制和管理规定
- 病案管理质量控制指标检查要点
- 2024年西藏中考物理模拟试题及参考答案
- 九型人格与领导力讲义
- 人教版五年级上册数学脱式计算练习200题及答案
- 卵巢黄体囊肿破裂教学查房
- 医院定岗定编
- 2023年大学物理化学实验报告化学电池温度系数的测定
评论
0/150
提交评论