导数及定积分知识点总结及练习经典_第1页
导数及定积分知识点总结及练习经典_第2页
导数及定积分知识点总结及练习经典_第3页
导数及定积分知识点总结及练习经典_第4页
导数及定积分知识点总结及练习经典_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、导数的应用及定积分(一)导数及其应用1函数yf(x)在xx0处的瞬时变化率是 .我们称它为函数yf(x)在xx0处的导数,记作f (x0)或y|xx0,即f (x0)。2导数的几何意义函数yf(x)在xx0处的导数,就是曲线yf(x)在xx0处的切线的斜率 ,即kf (x0).3函数的导数对于函数yf(x),当xx0时,f (x0)是一个确定的数当x变化时,f (x)便是一个关于x的函数,我们称它为函数yf(x)的导函数(简称为导数),即f (x)y.4函数yf(x)在点x0处的导数f (x0)就是导函数f (x)在点xx0处的函数值,即f (x0)f (x)|xx0。5常见函数的导数(xn)

2、_.()_.(sinx)_.(cosx)_.(ax)_.(ex)_.(logax)_.(lnx)_.(1)设函数f(x)、g(x)是可导函数,则:(f(x)g(x)_;(f(x)g(x)_(2)设函数f(x)、g(x)是可导函数,且g(x)0,_.(3)复合函数yf(g(x)的导数和函数yf(u),ug(x)的导数间的关系为yxyuux.即y对x的导数等于y对u的导数与u对x的导数的乘积6函数的单调性设函数yf(x)在区间(a,b)内可导,(1)如果在区间(a,b)内,f (x)0,则f(x)在此区间单调_;(2)如果在区间(a,b)内,f (x)0,则f(x)在此区间内单调_(2)如果一个函

3、数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较_,其图象比较_7函数的极值一般地,已知函数yf(x)及其定义域内一点x0,对于包含x0在内的开区间内的所有点x,如果都有_,则称函数f(x)在点x0处取得_,并把x0称为函数f(x)的一个_;如果都有_,则称函数f(x)在点x0处取得_,并把x0称为函数f(x)的一个_极大值与极小值统称为_,极大值点与极小值点统称为_8函数的最值假设函数yf(x)在闭区间a,b上的图象是一条连续不断的曲线,该函数在a,b上一定能够取得_与_,若该函数在(a,b)内是_,该函数的最值必在极值点或区间端点取得9生活中的实际优化问题(1)在解决实际优化

4、问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中_的取值范围(2)实际优化问题中,若只有一个极值点,则极值点就是_点(二)定积分1曲边梯形的面积(1)曲边梯形:由直线xa、xb(ab)、y0和曲线_所围成的图形称为曲边梯形(2)求曲边梯形面积的方法与步骤:分割:把区间a,b分成许多小区间,进而把曲边梯形拆分为一些_;近似代替:对每个小曲边梯形“_”,即用_的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的_;求和:把以近似代替得到的每个小曲边梯形面积的近似值_;取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个_,即为曲边梯形的面积2求

5、变速直线运动的路程如果物体做变速直线运动,速度函数为vv(t),那么也可以采用_、_、_、_的方法,求出它在atb内所作的位移s.3定积分的概念如果函数f(x)在区间a,b上连续,用分点ax0x1xi1xixnb将区间a,b等分成n个小区间,在每个小区间xi1,xi上任取一点i(i1,2,n),作和式Snf(i)x_(其中x为小区间长度),当n时,上述和式无限接近某个常数,这个常数叫做函数f(x)在区间a,b上的_,记作,即_这里,a与b分别叫做_与_,区间a,b叫做_,函数f(x)叫做_,x叫做_,f(x)dx叫做_4定积分的几何意义如果在区间a,b上函数f(x)连续且恒有_,那么定积分表示

6、由_,y0和_所围成的曲边梯形的面积5定积分的性质_(k为常数);_;_(其中aca0); cosx|;sinx|; ex|;|(a0且a1)练习题:1若直线yxb为函数y的图象的切线,求b及切点坐标2曲线yx2在点(3,6)处的切线与x轴、直线x2所围成的三角形的面积为_3设y,x0)(1)求函数f(x)的单调区间;(2)若函数f(x)在x1,1内没有极值点,求a的取值范围;(3)若对任意的a3,6,不等式f(x)1在x2,2上恒成立,求m的取值范围9设f(x)x3x22ax.(1)若f(x)在(,)上存在单调递增区间,求a的取值范围;(2)当0a0,故函数f(x)的定义域为(0,)f (x

7、)a,f (2)a10,a.f (x)(2x25x2),令f (x)0,得0x2,令f (x)0,得x0恒成立,因为f(x)a,所以需x0时ax22xa0恒成立,即a对x0恒成立因为1,当且仅当x1时取等号,所以a1.7题:因为f(x)在x1时有极值0,且f (x)3x26axb.所以,即,解得,或 .当a1,b3时,f (x)3x26x33(x1)20,所以f(x)在R上为增函数,无极值,故舍去;当a2,b9时,f (x)3x212x93(x1)(x3)当x3,1时,f(x)为减函数;当x1,)时,f(x)为增函数,所以f(x)在x1时取得极小值因此a2,b9.8题:(1)f (x)3x22

8、axa23(x)(xa),又a0,当x时,f (x)0;当ax时,f (x)0,a3.(3)a3,6,1,2,a3,又x2,2,当x2,)时,f (x)0,f(x)单调递减,当x(,2时,f(x)单调递增,故f(x)的最大值为f(2)或f(2)而f(2)f(2)164a20,得a,所以,当a时,f(x)在(,)上存在单调递增区间(2)令f(x)0,得两根x1,x2,所以f(x)在(,x1),(x2,)上单调递减,在(x1,x2)上单调递增因为0a2,所以x11x24,所以f(x)在1,4上的最大值为f(x2)又f(4)f(1)6a0,所以f(4)f(1),所以f(x)在1,4上的最小值为f(4)8a,得a1,x22,从而f(x)在1,4上的最大值为f(2)10题:每月生产x吨时的利润为f(x)(24200x2)x(50000200x)x324000x50000 (x0)由f (x)x2240000,解得x1200,x2200(舍去)因f(x)在0,)内只有一个点x200使f (x)0,故它就是最大值点,且最大值为:f(200)20032400020050000315000

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论