版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、11.3 多边形及其内角和多边形及其内角和 (第(第1课时)课时)八年级八年级 上册上册三江中学三江中学 雍思贤雍思贤 学习目标:学习目标:1了解多边形的有关概念,感悟类比方法的价值了解多边形的有关概念,感悟类比方法的价值2探索并证明多边形内角和公式,体会化归思想和探索并证明多边形内角和公式,体会化归思想和 从具体到抽象的研究问题方法从具体到抽象的研究问题方法3运用多边形内角和公式解决简单问题运用多边形内角和公式解决简单问题学习重点:学习重点: 多边形内角和公式的探索与证明过程多边形内角和公式的探索与证明过程创设情境,导入新知创设情境,导入新知问题你能从图中想象出几个由一些线段围成的图问题你能
2、从图中想象出几个由一些线段围成的图 形吗?形吗?创设情境,导入新知创设情境,导入新知多边形的定义:多边形的定义: 在平面内,由一些线段首尾顺次相接组成的封闭图在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形形叫做多边形. .创设情境,导入新知创设情境,导入新知如图,从五边形如图,从五边形ABCDE 的顶点的顶点A 出发共有几条对出发共有几条对 角线?角线?ABCDE凸四边形凸四边形创设情境,导入新知创设情境,导入新知观察你能说出这两个图形的异同点吗?观察你能说出这两个图形的异同点吗?ABCDBDCA凹四边形凹四边形创设情境,导入新知创设情境,导入新知想一想正方形的边、角有什么特点?想一
3、想正方形的边、角有什么特点?各个角都相等,各条边都相等的多边形叫做正多边形各个角都相等,各条边都相等的多边形叫做正多边形回忆长方形、正方形的内角和等于回忆长方形、正方形的内角和等于_._.360创设情境,导入新知创设情境,导入新知思考任意一个四边形的内角和是否也等于思考任意一个四边形的内角和是否也等于360 呢?呢?动手操作,探究新知动手操作,探究新知探究你能利用三角形内角和定理证明你的结论探究你能利用三角形内角和定理证明你的结论吗?吗?证明:证明:连接连接AC, BAD + +B + +BCD + +D = =(BAC + +BCA + +B) + + (DAC + +DCA + +D),=
4、 = 180 + + 180 = = 360 ABCD动手操作,探究新知动手操作,探究新知探究你能利用三角形内角和定理证明你的结论探究你能利用三角形内角和定理证明你的结论 吗?吗?从四边形的一个顶点出发,从四边形的一个顶点出发,可以作可以作_条对角线,它们将条对角线,它们将四边形分为四边形分为个三角形,个三角形,四边形的内角和等于四边形的内角和等于180_=_=122360ABCDABCDE动手操作,探究新知动手操作,探究新知探究类比前面的过程,你能探索五边形的内角和探究类比前面的过程,你能探索五边形的内角和 吗?六边形呢?吗?六边形呢?如图,从五边形的一个顶点如图,从五边形的一个顶点出发,可
5、以作出发,可以作条对角线,它条对角线,它们将五边形分为们将五边形分为_个三角形,个三角形,五边形的内角和等于五边形的内角和等于 180= =233540动手操作,探究新知动手操作,探究新知如图,从六边形的一个顶点出发,可以作如图,从六边形的一个顶点出发,可以作_条条 对角线,它们将六边形分为对角线,它们将六边形分为_个三角形,六边形的个三角形,六边形的 内角和等于内角和等于180_=_=_344720CABDEF从从n 边形的一个顶点出发,可以作(边形的一个顶点出发,可以作(n - -3)条对角)条对角线,它们将线,它们将n 边形分为(边形分为(n - -2)个三角形,这()个三角形,这(n
6、- -2)个三角形的内角和就是个三角形的内角和就是n 边形的内角和,所以,边形的内角和,所以,n 边形边形的内角和等于(的内角和等于(n - -2)180归纳总结,获得新知归纳总结,获得新知思考你能从四边形、五边形、六边形的内角和的思考你能从四边形、五边形、六边形的内角和的 研究过程获得启发,发现多边形的内角和与边数的关系研究过程获得启发,发现多边形的内角和与边数的关系 吗?吗?能证明你发现的结论吗?能证明你发现的结论吗?1 4408动脑思考,例题解析动脑思考,例题解析 例例1 填空:填空:(1)十边形的内角和为)十边形的内角和为 度度(2)已知一个多边形的内角和为)已知一个多边形的内角和为1
7、 080,则它的边数,则它的边数 为为_(3 3)从从n边形的一个顶点引出边形的一个顶点引出_条对角线,分割条对角线,分割 出出_个三角形,故个三角形,故n边形内角和是边形内角和是_ 对角线的总条数是对角线的总条数是_。(n -3)(n -2)(n -2)180(3)2n n解:解:如图,四边形如图,四边形ABCD 中中, A + +C = =180 A + +B + +C + +D = =(4 - 2)180 =360,B + +D = =360- -(A + + C) = =360- 180 = =180 动脑思考,例题解析动脑思考,例题解析例例2如果一个四边形的一组对角互补,那么另一如果一个四边形的一组对角互补,那么另一组对角有什么关系?组对角有什么关系?ABCD如果四边形的一组对角互补,那么另一组对角也互补如果四边形的一组对角互补,那么另一组对角也互补. .(1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容? (2)我们是怎样得到多边形内角和公式的?)我们是怎样得到多边形内角和公式的?(3)在探究多边形内角和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年地产项目土地储备转让合同范本3篇
- 短期租赁场地租赁合同
- 人力资源招聘与培训管理办法
- 污水处理厂水塔施工合同
- 施工电梯大修拆卸合同
- 橄榄球场遮阳棚定制协议
- 服装企业内部招投标管理规定
- 乳制品销售专员招聘协议
- 乡镇企业员工聘用协议书
- 2024年度铁路货物运输合同范本6篇
- 腹部外伤门诊病历
- 银行保险理财沙龙.ppt课件
- 品质异常处理及要求培训
- 模具部年终总结--ppt课件
- 标准OBD-II故障码
- 连铸机维护及维修标准
- 立式热虹吸再沸器机械设计说明书
- 国家开放大学《水利水电工程造价管理》形考任务1-4参考答案
- 国家开放大学电大《生产与运作管理》2025-2026期末试题及答案
- 质量保证大纲(共14页)
- Starter软件简易使用手册
评论
0/150
提交评论