132 函数的极值与导数_第1页
132 函数的极值与导数_第2页
132 函数的极值与导数_第3页
132 函数的极值与导数_第4页
132 函数的极值与导数_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.3.2函数的极值与导数明目标、知重点1了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用2掌握函数极值的判定及求法3掌握函数在某一点取得极值的条件1极值点与极值(1)极小值点与极小值如图,函数yf(x)在点xa的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0;而且在点xa附近的左侧f(x)0,右侧f(x)0,则把点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值(2)极大值点与极大值如图,函数yf(x)在点xb的函数值f(b)比它在点xb附近其他点的函数值都大,f(b)0;而且在点xb的左侧f(x)0,右侧f(x)0,则把点b叫做函

2、数yf(x)的极大值点,f(b)叫做函数yf(x)的极大值(3)极大值点、极小值点统称为极值点,极大值和极小值统称为极值2求函数yf(x)的极值的方法解方程f(x)0,当f(x0)0时:(1)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值(2)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值情境导学在必修1中,我们研究了函数在定义域内的最大值与最小值问题但函数在定义域内某一点附近,也存在着哪一点的函数值大,哪一点的函数值小的问题,如何利用导数的知识来判断函数在某点附近函数值的大小问题?又如何求出这些值?这就是本节我们要研究的主要内容探究点一函数的极

3、值与导数的关系思考1如图观察,函数yf(x)在d、e、f、g、h、i等点处的函数值与这些点附近的函数值有什么关系?yf(x)在这些点处的导数值是多少?在这些点附近,yf(x)的导数的符号有什么规律?答以d、e两点为例,函数yf(x)在点xd处的函数值f(d)比它在点xd附近其他点的函数值都小,f(d)0;在xd的附近的左侧f(x)<0,右侧f(x)0.类似地,函数yf(x)在点xe处的函数值f(e)比它在xe附近其他点的函数值都大,f(e)0;在xe附近的左侧f(x)>0,右侧f(x)<0.结论思考1中点d叫做函数yf(x)的极小值点,f(d)叫做函数yf(x)的极小值;点e

4、叫做函数yf(x)的极大值点,f(e)叫做函数yf(x)的极大值极大值点、极小值点统称为极值点,极大值和极小值统称为极值思考2函数的极大值一定大于极小值吗?在区间内可导函数的极大值和极小值是唯一的吗?答函数的极大值与极小值并无确定的大小关系,一个函数的极大值未必大于极小值;在区间内可导函数的极大值或极小值可以不止一个思考3若某点处的导数值为零,那么,此点一定是极值点吗?举例说明答可导函数的极值点处导数为零,但导数值为零的点不一定是极值点可导函数f(x)在x0处取得极值的充要条件是f(x0)0且在x0两侧f(x)的符号不同例如,函数f(x)x3可导,且在x0处满足f(0)0,但由于当x<0

5、和x>0时均有f(x)>0,所以x0不是函数f(x)x3的极值点思考4函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有_个极小值点答案1解析由图可知,在区间(a,x1),(x2,0),(0,x3)内f(x)>0;在区间(x1,x2),(x3,b)内f(x)<0.即f(x)在(a,x1)内单调递增,在(x1,x2)内单调递减,在(x2,x3)内单调递增,在(x3,b)内单调递减所以,函数f(x)在开区间(a,b)内只有一个极小值点,极小值点为xx2.故填1.例1求函数f(x)x34x4的极值解f(x)

6、x24.解方程x240,得x12,x22.由f(x)>0,得x<2或x>2;由f(x)<0,得2<x<2.当x变化时,f(x),f(x)的变化情况如下表:x(,2)2(2,2)2(2,)f(x)00f(x)单调递增单调递减单调递增由表可知:当x2时,f(x)有极大值f(2);当x2时,f(x)有极小值f(2).反思与感悟求可导函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f(x);(2)求方程f(x)0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干个小开区间,并列成表格检测f(x)在方程根左右两侧的值的符号,如果左正右负,那么f(

7、x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值跟踪训练1求函数f(x)3ln x的极值解函数f(x)3ln x的定义域为(0,),f(x).令f(x)0,得x1.当x变化时,f(x)与f(x)的变化情况如下表:x(0,1)1(1,)f(x)0f(x)单调递减3单调递增因此,当x1时,f(x)有极小值f(1)3.探究点二利用函数极值确定参数的值思考已知函数的极值,如何确定函数解析式中的参数?答解这类问题,通常是利用函数的导数在极值点处的取值等于零来建立关于参数的方程,从而求出参数的值需注意的是,可导函数在某点处的导数值等

8、于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数值进行检验,看是否符合函数取得极值的条件例2已知f(x)x33ax2bxa2在x1时有极值0,求常数a,b的值解因为f(x)在x1时有极值0,且f(x)3x26axb,所以即解之得或当a1,b3时,f(x)3x26x33(x1)20,所以f(x)在R上为增函数,无极值,故舍去当a2,b9时,f(x)3x212x93(x1)(x3)当x(3,1)时,f(x)为减函数;当x(1,)时,f(x)为增函数,所以f(x)在x1时取得极小值,因此a2,b9.反思与感悟(1)利用函数的极值确定参数的值,常根据极值点处导数为0和极值两个条件列方程组,

9、利用待定系数法求解(2)因为“导数值等于零”不是“此点为极值点”的充要条件,所以利用待定系数法求解后,必须验证根的合理性跟踪训练2设x1与x2是函数f(x)aln xbx2x的两个极值点(1)试确定常数a和b的值;(2)判断x1,x2是函数f(x)的极大值点还是极小值点,并说明理由解(1)f(x)aln xbx2x,f(x)2bx1.由极值点的必要条件可知:f(1)f(2)0,a2b10且4b10,解方程组得,a,b.(2)由(1)可知f(x)ln xx2x,且函数f(x)ln xx2x的定义域是(0,),f(x)x1x1.当x(0,1)时,f(x)0;当x(1,2)时,f(x)0;当x(2,

10、)时,f(x)0;所以,x1是函数f(x)的极小值点,x2是函数f(x)的极大值点探究点三函数极值的综合应用例3设函数f(x)x36x5,xR.(1)求函数f(x)的单调区间和极值;(2)若关于x的方程f(x)a有三个不同的实根,求实数a的取值范围解(1)f(x)3x26,令f(x)0,解得x1,x2.因为当x>或x时,f(x)0;当x时,f(x)0.所以,f(x)的单调递增区间为(,)和(,);单调递减区间为(,)当x时,f(x)有极大值54;当x时,f(x)有极小值54.(2)由(1)的分析知yf(x)的图象的大致形状及走向如图所示所以,当54a54时,直线ya与yf(x)的图象有三

11、个不同的交点,即方程f(x)a有三个不同的实根反思与感悟用求导的方法确定方程根的个数,是一种很有效的方法它通过函数的变化情况,运用数形结合思想来确定函数图象与x轴的交点个数,从而判断方程根的个数跟踪训练3若函数f(x)2x36xk在R上只有一个零点,求常数k的取值范围解f(x)2x36xk,则f(x)6x26,令f(x)0,得x1或x1,可知f(x)在(1,1)上是单调减函数,f(x)在(,1)和(1,)上是单调增函数f(x)的极大值为f(1)4k,f(x)的极小值为f(1)4k.要使函数f(x)只有一个零点,只需4k<0或4k>0(如图所示)或即k<4或k>4.k的取

12、值范围是(,4)(4,)1“函数yf(x)在一点的导数值为0”是“函数yf(x)在这点取得极值”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件答案B解析对于f(x)x3,f(x)3x2,f(0)0,不能推出f(x)在x0处取极值,反之成立故选B.2.函数f(x)的定义域为R,导函数f(x)的图象如图所示,则函数f(x)()A无极大值点,有四个极小值点B有三个极大值点,两个极小值点C有两个极大值点,两个极小值点D有四个极大值点,无极小值点答案C解析f(x)的符号由正变负,则f(x0)是极大值,f(x)的符号由负变正,则f(x0)是极小值,由图象易知有两个极大值点,两个极小值点3已知f(x)x3ax2(a6)x1有极大值和极小值,则a的取值范围为()A1<a<2 B3<a<6Ca<1或a>2 Da<3或a>6答案D解析f(x)3x22axa6,因为f(x)既有极大值又有极小值,那么(2a)24×3×(a6)>0,解得a>6或a<3.4设aR,若函数yexax,xR有大于零的极值点,则a的取值范围为_答案(,1)解析yexa,由y0得xln(a)由题意知ln(a)>0,a<1.5直线ya与函数yx33x的图象有三个相异的交点,则a的取值范围是_

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论