版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流正弦定理公式.精品文档.【正弦定理公式】;【余弦定理公式】; 如果将公式、正弦定理、余弦定理看成是几个“方程”的话,那么解三角形的实质就是把题目中所给的已知条件按方程的思想进行处理,解题时根据已知量与所求量,合理选择一个比较容易解的方程(公式、正弦定理、余弦定理),从而使同学们入手容易,解题简洁。一、直接运用公式、正弦定理、余弦定理(1)三角公式在中,已知两角的三角函数值,求第三个角;存在。证明:有解有解即,要判断是否有解,只需。(2)正弦定理在中,已知两角和任意一边,解三角形;在中,已知两边和其中一边对角,解三角形;(3)余弦定理
2、在中,已知三边,解三角形;在中,已知两边和他们的夹角,解三角形。直接运用正弦定理、余弦定理的上述情况,是我们常见、常讲、常练的,因此,在这里就不加赘述,同学们可以自己从教材中找一些题目看一看!二、间接运用公式、正弦定理、余弦定理(1)齐次式条件(边或角的正弦)若题目条件中出现关于角的齐次式或关于边的齐次式,可以根据角的异同选用公式弦切互化或正弦定理边角互化;有些题中没有明显的齐次式,但经过变形得到齐次式的依然适用。1.相同角齐次式条件的弦切互化【例】在中,若,求。【解析】无论是条件中的,还是都是关于一个角的齐次式。是关于的一次齐次式;是关于的二次齐次式。因此,我们将弦化切,再利用三角公式求解。
3、由;由或;在中,且。代值可得:当,时,;当,时,(舍去)。2.不同角(正弦)齐次式条件的边角互化【例】在中,若,且,求的面积。【解析】条件是关于不同角正弦的二次齐次式。因此,我们利用正弦定理将角化为边,然后根据边的关系利用余弦定理求解。由;显然这个形式符合余弦定理的公式,因此,可得。又因为,所以。3.不同边齐次式条件的边角互化【例】的内角的对边分别为。已知,求。【解析】条件是关于不同边的一次齐次式。因此,我们利用正弦定理将边化为角,然后由将不同角转化为同角,利用化一公式求解。由,又,可得:,运用化一公式得。4.边角混合齐次式条件的边角互化边角混合边为齐次式【例】的内角的对边分别为,且,求。【解
4、析】条件是边角混合关于不同边的一次齐次式,由于所求为切的值,所以将边化为角,然后将弦化为切求解。由,又,则边角混合角(正弦)为齐次式【例】的内角的对边分别为,且,求。【解析】条件是边角混合角(正弦)为不同角的一次齐次式。因此,我们将角的正弦化为边,然后根据等式形式利用余弦定理求解。由,由于,我们可以得到:,显然这个形式符合余弦定理公式,因此,可得。从而得出。边角混合边、角(正弦)都为齐次式【例】的内角的对边分别为,且,求。【解析】条件是边角混合边、角(正弦)各为一次齐次式。因此,我们可以随意边角互化,但是一般将角转化为边求解。由,显然这个形式符合余弦定理公式,因此,可得。从而得出。5.非三角形
5、内角正弦但可化为角(正弦)齐次式【例】的内角的对边分别为,且,求证:的三边成等比数列。【解析】条件显然不是齐次式,并且角也不全是三角形的内角。因此,首先得把这些角转变为三角形的内角,然后再往齐次式化利用正弦定理求解。由,只要将变换为,题中的条件就变成了关于不同内角正弦的二次齐次式:(2)不同边的平方关系(余弦定理)若题目条件中出现关于边的平方关系或求边的平方关系,可以选用余弦定理边角互化,在上面的一些情况中,有利用正弦定理转化出不同边的平方关系,可以作为参考例题。【例】的内角的对边分别为,且,求。【解析】条件含有不同边的平方关系,形式显然符合余弦定理公式。由。(3)存在消不掉的正弦、余弦值(两定理同时使用,边角互化)若题目条件中的条件不是上述情况,且始终含有消不去的内角正弦、余弦,可以同时使用正弦、余弦定理边角互化,要么都化为角(正弦、余弦),要么都化为边。【例】在中,已知,且,求。【解析】由题目中条件可得,接下来再利用余弦定理可得,又,所以或。因为。解三角形运用的原理简单,但是题目灵活多变,往
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 系绳物体的浮力问题-2023年中考物理复习讲练(原卷版)
- 知识产权保护承诺书
- 美丽的颐和园导游词(33篇)
- 物流运输车辆租赁合同(35篇)
- 粗砂垫层试验段的施工方案及试验段总结
- 23.1 平均数与加权平均数 同步练习
- 天津市南开区2024-2025学年七年级上学期11月期中道德与法治试题(含答案)
- 2024年建筑电工(建筑特殊工种)考试试题题库
- 黑龙江省大庆市肇源县联盟学校2024-2025学年七年级上学期11月期中生物试题(含答案)
- 广东省广州市名校2025届高三上学期综合测试(一)语文试题(含答案)
- 部编版《道德与法治》三年级上册第10课《父母多爱我》教学课件
- 大语言模型赋能自动化测试实践、挑战与展望-复旦大学(董震)
- 期中模拟检测(1-3单元)2024-2025学年度第一学期西师大版二年级数学
- 追觅科技在线测评逻辑题
- 气管插管操作规范(完整版)
- 2024-2025学年外研版英语八年级上册期末作文范文
- 四级劳动关系协调员试题库含答案
- 运城中学2023-2024学年八年级上学期期中考试数学试卷(含解析)
- 2025年广东省高中学业水平考试春季高考数学试题(含答案解析)
- 2024年重庆市渝北区数据谷八中小升初数学试卷
- 凝中国心铸中华魂铸牢中华民族共同体意识-小学民族团结爱国主题班会课件
评论
0/150
提交评论