版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、微专题十二圆锥曲线中性质的推广第九章平面解析几何真题研究一道高考解析几何试题的命题背景可能就是圆锥曲线的一个性质定理的特殊情况.如果掌握了定理的原理,也就把握了试题的本质.对一些典型的试题,不应满足于会解,可以引导学生深入探究试题背后的知识背景,挖掘问题的本质.这样才能真正找到解决问题的方法,学会用更高观点去看待数学问题,把握问题的本质.正如普通高中数学课程标准(实验)所倡导的数学探究性课题学习,引导学生围绕某个数学问题,观察分析,自主探究,提出有意义的数学问题,探求适当的数学结论和规律.一、试题展示题1(2018全国)如图1所示,设抛物线C:y22x,点A(2,0),B(2,0),过点A的直
2、线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;解当l与x轴垂直时,l的方程为x2,可得点M的坐标为(2,2)或(2,2).即x2y20或x2y20.(2)证明:ABMABN.证明当l与x轴垂直时,AB为MN的垂直平分线,所以ABMABN.当l与x轴不垂直时,设l的方程为yk(x2)(k0),M(x1,y1),N(x2,y2),则x10,x20.所以kBMkBN0,可知BM,BN的倾斜角互补,所以ABMABN.综上,ABMABN.题2(2018全国)设椭圆C: y21的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程
3、;解由已知得F(1,0),l的方程为x1.(2)设O为坐标原点,证明:OMAOMB.证明当l与x轴重合时,OMAOMB0.当l与x轴垂直时,OM为AB的垂直平分线,所以OMAOMB.当l与x轴不重合也不垂直时,设l的方程为yk(x1)(k0),A(x1,y1),B(x2,y2),(2k21)x24k2x2k220,由题意知0恒成立,从而kMAkMB0,故MA,MB的倾斜角互补.所以OMAOMB.综上,OMAOMB.点评以上两题是2018年高考全国卷解析几何题的倒数第二题,是选拔题.第(1)问根据直线方程的求法,多数学生都能完成,第(2)问是个探索性问题,重点考查用坐标法研究圆锥曲线中的定点定值
4、问题,考查数形结合、函数方程、分类讨论等基本数学思想,同时考查综合运用所学数学知识分析问题和解决问题的能力,综合考查学生的运算能力和数学素养.本题的呈现形式“平易近人”,是平面几何中的角平分线问题,但本题的解决过程却充分体现了坐标法的思想,可以将等角的几何关系式转化为坐标代数关系式,然后再用坐标法来处理.本题看起来很平常,实际上却背景丰富,有一定难度和区分度,也有很大的数学价值和研究空间,我们重点研究第二小问的相关性质.二、性质研究性质1如图3所示,已知抛物线y22px(p0),点B(m,0)(m0),设不与x轴垂直的直线l与抛物线相交于M,N两点,则直线l过定点A(m,0)的充要条件是x轴是
5、MBN的角平分线.图3证明先证明必要性:设不与x轴垂直的直线l的方程为yk(xm)(k0),代入y22px,整理得k2x2(2k2m2p)xk2m20.所以ABMABN,所以x轴是MBN的角平分线.再证明充分性:设不与x轴垂直的直线l的方程ykxb(k0),代入y22px,整理得k2x22(kbp)xb20.设M(x1,y1),N(x2,y2),则由根与系数关系得即y1(x2m)y2(x1m)0.再将y1kx1b,y2kx2b代入上式,得(kx1b)(x2m)(kx2b)(x1m)0,即2kx1x2(bkm)(x1x2)2mb0, 将式代入式,得2kb22(bkm)(pkb)2mbk20,整理得bkm,此时0,直线l的方程为yk(xm),所以直线l过定点A(m,0).图4证明先证明必要性:设不与x轴垂直的直线l的方程为yk(xm)(k0),设A(x1,y1),B(x2,y2),则由根与系数的关系得所以OMAOMB,所以x轴是AMB的角平分线.再证明充分性:(a2k2b2)x22kta2xa2(t2b2)0.设A(x1,y1),B(x2,y2),则由根与系数的关系得整理得tkm.此时0,所以直线l的方程为yk(xm),所以直线l过定点P(m,0).图5性质3的证明类似于性质2的证明.三、性质推广图6证明当直线l垂直于x轴时,易得kPBkQB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 喷水器产业链招商引资的调研报告
- 药用锭剂项目运营指导方案
- 增白霜产品供应链分析
- 区块链金融市场交易行业市场调研分析报告
- 企业公益慈善活动创意策划与执行服务行业营销策略方案
- 厨房用具产品供应链分析
- 书法服务行业市场调研分析报告
- 事故信号发射器产品供应链分析
- 仿皮包产品供应链分析
- 矿泉水盐项目营销计划书
- 《中值定理应用》课件
- 十分钟EE从入门到精通2.0
- 子宫肌瘤讲解
- 六年级英语上册课件-Unit4 I have a pen pal 人教pep (共23张PPT)
- 糖尿病膳食计算课件
- 文化创意产品设计及案例PPT完整全套教学课件
- DB4208T74-2022《早春大棚西瓜生产技术规程》
- 《上消化道出血诊疗指南》讲稿
- 《表观遗传学第一章》课件
- 急诊及创伤外科题库
- 人教版四年级上册数学大数的认识《改写和近似数》课件
评论
0/150
提交评论