下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、研究性课题与实习作业 :线性规划的实际应用教学目标(1)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;(2)了解线性规化问题的图解法;(3)培养学生搜集、分析和整理信息的能力,在活动中学会沟通与合作,培养探索研究的能力和所学知识解决实际问题的能力;(4)引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德教学建议一、重点难点分析学以致用,培养学生“用数学”的意识是本节的重要目的。学习线性规划的有关知识其最终目的就是运用它们去解决一些生产、生活中问题,因而本节的教学重点是:线性规划在实际生活中的应
2、用。困难大多是如何把实际问题转化为数学问题(既数学建模),所以把一些生产、生活中的实际问题转化为线性规划问题,就是本节课的教学难点。突破这个难点的关键就在于尽快熟悉生活,了解实际情况,并与所学知识紧密结合起来。二、教法建议(l)建议可适当采用电脑多媒体和投影仪等先进手段来辅助教学,以增加课堂容量,增强直观性,进而提高课堂效率(2)课堂上可以设计几个实际让学生分组研讨解答,一方面是复习线性规划问题的一般解法,为总结线性规划问题的数学模型和常见类型作铺垫;另一方面,也为接下来到外面分组调研积累经验,让学生在讨论、探究过程中初步学会沟通与合作,共同完成活动任务(3)确定研究课题,建议各小组以三个常见
3、问题为主,或者根据本小组实际自拟课题(4)活动安排,建议要求各小组分式明确,团结协作,听从指挥,注意安全学生研究活动的成果,可以用研究报告或论文的形式体现一切以学生自己的自主探究活动为主,教师不能越俎代庖(5)对学生在课余时间开展的研究性课题,建议作做好成果展示、评估和交流展示不仅可以让全体学生来分享成果,享受成功的喜悦,而且还可以锻炼学生的组织表达能力,增强学生的自信心通过评估,可以使同学清楚地看到自己的优点与不足通过交流研讨,分享成果,进行思维碰撞,使认识和情感得到提升教学设计方案教学目标 (1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本
4、概念; (2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题; (3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力; (4)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新重点难点 理解二元一次不等式表示平面区域是教学重点。 如何扰实际问题转化为线性规划问题,并给出解答是教学难点。教学步骤(一)引入新课 我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?(二)线性规划问题的教学模型 线性规划研究
5、的是线性目标函数在线性约束条件下取最大值或最小值问题,一般地,线性规划问题的数字模型是已知 其中 都是常数, 是非负变量,求 的最大值或最小值,这里 是常量。 前面我们计论了两个变量的线性规划问题,这类问题可以用图解法来求最优解,涉及更多变量的线性规划问题不能用图解法求解。比如线性不等式 不能用图形来表示它,那么对四元线性规划问题就不能用图形来求解了,对这样的线性规划问题怎样求解,同学们今后在大学学习中会得到解决。线性规划在实际中的应用 线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能
6、以最少的人力、物力、资金等资源来完成该项任务,常见问题有: 1物调运问题 例如,已知 两煤矿每年的产量,煤需经 两个车站运往外地, 两个车站的运输能力是有限的,且已知 两煤矿运往 两个车站的运输价格,煤矿应怎样编制调运方案,能使总运费最小? 2产品安排问题 例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,能使每月获得的总利润最大? 3下料问题 例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 4研究一个例子 下面的问题,能否用线性规划求解?如能
7、,请同学们解出来。 某家具厂有方木料 ,五合板 ,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料 、五合板 ,生产每个书橱需要方木料 、五合板 ,出售一张书桌可获利润80元,出售一个书橱可获利润120元,如果只安排生产书桌,可获利润多少?如何只安排生产书橱,可获利润多少?怎样安排生产时可使所得利润最大?A教师指导同学们逐步解答: (1)先将已知数据列成下表 (2)设生产书桌_张,生产书橱y张,获利润为z元。 分析:显然这是一个二元线性问题,可归结于线性规划问题,并可用图解法求解。 (3)目标函数 在第一个问题中,即只生产书桌,则 ,约束条件为 最多生产300张书桌,获利润 元 这样安排生
8、产,五合板先用光,方木料只用了 ,还有 没派上用场。 在第二个问题中,即只生产书橱,则 ,约束条件是 最多生产600张书橱,获利润 元 这样安排生产,五合板也全用光,方木料用去了 ,仍有 没派上用场,获利润比只生产书桌多了_*元。 在第三个问题中,即怎样安排生产,可获利润最大? ,约束条件为 对此,我们用图解法求解, 先作出可行域,如图阴影部分。 时得直线 与 平行的直线 过可行域内的点M(0,600)。因为与 平等的过可行域内的点的所有直线中, 距原点最远,所以最优解为 ,即此时 因此,只生产书橱600张可获得最大利润,最大利润是_*元。B讨论 为什么会出现只生产书橱,可获最大利润的情形呢?
9、第一,书橱比书桌价格高,因此应该尽可能多生产书橱;第二,生产一张书橱只需要五合板 ,生产一张书桌却需要五合板 ,按家具厂五合板的存有量 ,可生产书橱600张,若同时又生产书桌,则生产一张书桌就要减少两张书橱,显然这不合算;第三,生产书橱的另种材料,即方木料是足够供应的,家具厂方木料存有量为 ,而生产600张书橱只需要方木料 。 这是一个特殊的线性规划问题,再来研究它的解法。C改变这个例子的个别条件,再来研究它的解法。 将这个例子中方木料存有量改为 ,其他条件不变,则M(100,400)而平行于 的直线 离原点的距离最大,所以最优解为(100,400),这时 (元)。探究活动如何确定水电站的位置 小河同侧有两个村庄A,B,两村庄计划于河上共建一水电站发电供两村使用已知 A,B两村到河边的垂直距离分别为300m和700m,且两村相距500m,问水电站建于何处,送电到两村电线用料最省? 解视两村庄为两点A,B,小河为一条直线L,原问题便转化成在直线上找一点P,使P点到A,B两点距离之和为最小的问题 以L所在直线为 轴, 轴通过A点建立直角坐标系,如图所示作A关于 轴的对称点 ,连 , 与 轴交于点P由平面几
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育领域实验室安全教育培训
- 数据分析专业就业市场现状及前景分析
- 教育与未来的连接小学科学教育的探究式教学探索
- 江南大学高性能计算集群资源共享服务合同3篇
- 二零二五年度鱼塘水资源利用协议2篇
- 碎石料供应与购买2025年度合同范例2篇
- 2025年度旅游民宿租赁管理服务合同4篇
- 二零二五年度人才住房项目公积金贷款购房合同4篇
- 2025年度出口化妆品安全检测合同规范4篇
- 2025年度园林绿化工程项目财务管理合同4篇
- 2025届河南省郑州一中高三物理第一学期期末学业水平测试试题含解析
- 个体工商户章程(标准版)
- 七年级英语阅读理解55篇(含答案)
- 废旧物资买卖合同极简版
- 2024年正定县国资产控股运营集团限公司面向社会公开招聘工作人员高频考题难、易错点模拟试题(共500题)附带答案详解
- 李克勤红日标准粤语注音歌词
- 教科版六年级下册科学第一单元《小小工程师》教材分析及全部教案(定稿;共7课时)
- 中药材产地加工技术规程 第1部分:黄草乌
- 危险化学品经营单位安全生产考试题库
- 案例分析:美国纽约高楼防火设计课件
- 移动商务内容运营(吴洪贵)任务一 用户定位与选题
评论
0/150
提交评论