版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流中考数学专题复习:相似图形.精品文档.中考数学专题复习 相似图形【基础知识回顾】一、 成比例线段: 1、线段的比:如果选用同一长度的两条线段,的长度分别为m、n则这两条线段的比就是它们 的比,即:= 2、比例线段:四条线段a、b、c、d如果= 那么四条线段叫做同比例线段,简称 3、比例的基本性质:=<> 4、平行线分线段成比例定理:将平行线截两条直线【提醒:表示两条线段的比时,必须使示用相同的 ,在用了相同的前提下,两条线段的比值与用的单位无关 即比值没有单位。】二、相似三角形: 1、定义:如果两个三角形的各角对应 各边对应 那么
2、这两个三角形相似 2、性质:相似三角形的对应角 对应边 相似三角形对应点的比、对应角平分线的比、对应 的比都等于 相似三角形周长的比等于 面积的比等于 1、 判定:基本定理:平行于三角形一边的直线和其它两边或两线相交,三角形与原三角形相似 两边对应 且夹角 的两三角形相似 两角 的两三角形相似 三组对应边的比 的两三角形相似【名师提醒:1、全等是相似比为 的特殊相似2、根据相似三角形的性质的特质和判定,要证四条线段的比相等,一般要先证 判定方法中最常用的是 三组对应边成比例的两三角形相似多用在点三角形中】 三、相似多边形: 1、定义:各角对应 各边对应 的两个多边形叫做相似多边形 2、性质:相
3、似多边形对应角 对应边 相似多边形周长的比等于 面积的比等于 【名师提醒:相似多边形没有专门的判定方法,判定两多边形相似多用在矩形中,一般用定义进行判定】一、 位似: 1、定义:如果两个图形不仅是 而且每组对应点所在直线都经过 那么这样的两个图形叫做位似图形,这个点叫做 这时相似比又称为 2、性质:位似图形上任意一点到位似中心的距离之比都等于 【名师提醒:1、位似图形一定是 图形,但反之不成立,利用位似变换可以将一个图形放大或 2、在平面直角坐标系中,如果位似是以原点为位似中心,相似比位r,那么位似图形对应点的坐标的比等于 或 】【典型例题解析】考点一:比例线段例1 如图,已知AB
4、C,AB=AC=1,A=36°,ABC的平分线BD交AC于点D,则AD的长是 ,cosA的值是 (结果保留根号)考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义分析:可以证明ABCBDC,设AD=x,根据相似三角形的对应边的比相等,即可列出方程,求得x的值;过点D作DEAB于点E,则E为AB中点,由余弦定义可求出cosA的值点评:ABC、BCD均为黄金三角形,利用相似关系可以求出线段之间的数量关系;在求cosA时,注意构造直角三角形,从而可以利用三角函数定义求解对应训练2如图,在ABC中,AB=AC,A=36°,BD平分ABC交AC于点D,若AC=2,则AD的长是
5、()A B C D 考点二:相似三角形的性质及其应用例2 已知ABCDEF,ABC的周长为3,DEF的周长为1,则ABC与DEF的面积之比为 9:1对应训练2已知ABCABC,相似比为3:4,ABC的周长为6,则ABC的周长为 8 考点三:相似三角形的判定方法及其应用例3 如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC= BC图中相似三角形共有()A1对B2对C3对D4对考点:相似三角形的判定;正方形的性质例4(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程);(2)将图(1)中的正方形AEGH绕点A旋转一定角度
6、,如图(2),求HD:GC:EB;考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;正方形的性质对应训练3.如图,ABCADE且ABC=ADE,ACB=AED,BC、DE交于点O则下列四个结论中,1=2;BC=DE;ABDACE;A、O、C、E四点在同一个圆上,一定成立的有()A1个B2个C3个D4个考点:相似三角形的判定;全等三角形的性质;圆周角定理4. 在锐角ABC中,AB=4,BC=5,ACB=45°,将ABC绕点B按逆时针方向旋转,得到A1BC1(1)如图1,当点C1在线段CA的延长线上时,求CC1A1的度数;(2)如图2,连接AA1,CC1若A
7、BA1的面积为4,求CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质专题:几何综合题分析:(1)由由旋转的性质可得:A1C1B=ACB=45°,BC=BC1,又由等腰三角形的性质,即可求得CC1A1的度数;(2)由ABCA1BC1,易证得ABA1CBC1,然后利用相似三角形的面积比等于相似比的平方,即可求得CBC1的面积;(3)由当P在AC上运动至垂足点D,ABC绕点B旋转,使点P的对应点P1在线段AB上
8、时,EP1最小,当P在AC上运动至点C,ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值与最小值解答:解:(1)由旋转的性质可得:A1C1B=ACB=45°,BC=BC1,CC1B=C1CB=45°,.(2分)CC1A1=CC1B+A1C1B=45°+45°=90°(2)ABCA1BC1,BA=BA1,BC=BC1,ABC=A1BC1,ABC+ABC1=A1BC1+ABC1,ABA1=CBC1,ABA1CBC1 ,SABA1=4,SCBC1=; (3)如图1,过点B作BDAC,D为垂足,AB
9、C为锐角三角形,点D在线段AC上,在RtBCD中,BD=BC×sin45°=, 当P在AC上运动与AB垂直的时候,ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1-BE=BD-BE=-2; 当P在AC上运动至点C,ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=2+5=7点评:此题考查了旋转的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的应用此题难度较大,注意数形结合思想的应用,注意旋转前后的对应关系考点四:位似例5 如图,正方形ABCD的两边BC,AB分别在平
10、面直角坐标系的x轴、y轴的正半轴上,正方形ABCD与正方形ABCD是以AC的中点O为中心的位似图形,已知AC=3,若点A的坐标为(1,2),则正方形ABCD与正方形ABCD的相似比是()A B C D 考点:位似变换;坐标与图形性质分析:延长AB交BC于点E,根据大正方形的对角线长求得其边长,然后求得小正方形的对应训练5如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则E点的坐标为()A(,0) B( C D 考点:位似变换;坐标与图形性质【聚焦中考】1已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将ABE向上折叠,使B点落在AD上的
11、F点,若四边形EFDC与矩形ABCD相似,则AD=()ABCD2考点:相似多边形的性质;翻折变换(折叠问题)2如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OABC与矩形OABC关于点O位似,且矩形OABC的面积等于矩形OABC面积的 ,那么点B的坐标是()A(-2,3)B(2,-3)C(3,-2)或(-2,3)D(-2,3)或(2,-3)考点:相似多边形的性质;坐标与图形性质3.在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,若EC=2BE,则 的值是()A B C D 考点:相似三角形的判定与性质;菱形的性质4.为了测量被池塘隔开的A
12、,B两点之间的距离,根据实际情况,作出如图图形,其中ABBE,EFBE,AF交BE于D,C在BD上有四位同学分别测量出以下四组数据:BC,ACB; CD,ACB,ADB;EF,DE,BD;DE,DC,BC能根据所测数据,求出A,B间距离的有()A1组B2组C3组D4组F考点:相似三角形的应用;解直角三角形的应用5如图,在平面直角坐标系中,ABC的顶点坐标分别为(4,0),(8,2),(6,4)已知A1B1C1的两个顶点的坐标为(1,3),(2,5),若ABC与A1B1C1位似,则A1B1C1的第三个顶点的坐标为 (3,4)或(0,4)考点:位似变换;坐标与图形性质6如图,在边长为1的
13、小正方形组成的网格中,ABC和DEF的顶点都在格点上,P1,P2,P3,P4,P5是DEF边上的5个格点,请按要求完成下列各题:(1)试证明三角形ABC为直角三角形;(2)判断ABC和DEF是否相似,并说明理由;(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与ABC相似(要求:用尺规作图,保留痕迹,不写作法与证明)考点:作图相似变换;勾股定理的逆定理;相似三角形的判定【备考真题过关】一、选择题1已知 ,则 的值是()A B C D2如图,ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC若ABC的边长为4,AE=2,则BD的长为()A2 B
14、3 C D3如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD的各边上,EFACHG,EHBDFG,则四边形EFGH的周长是()A B C D考点:平行线分线段成比例;勾股定理;矩形的性质4小张用手机拍摄得到甲图,经放大后得到乙图,甲图中的线段AB在乙图中的对应线段是()AFGBFHCEHDEF考点:相似图形5.如图,六边形ABCDEF六边形GHIJKL,相似比为2:1,则下列结论正确的是()AE=2KBBC=2HIC六边形ABCDEF的周长=六边形GHIJKL的周长DS六边形ABCDEF=2S六边形GHIJKL6.下列4×4的正方形网格中,小正方形的边长
15、均为1,三角形的顶点都在格点上,则与ABC相似的三角形所在的网格图形是()ABCD7.如图,点D在ABC的边AC上,要判定ADB与ABC相似,添加一个条件,不正确的是()AABD=C BADB=ABC C D考点:相似三角形的判定8如图,在ABC中,EFBC, ,S四边形BCFE=8,则SABC=()A9B10C12D13考点:相似三角形的判定与性质9.如图,在四边形ABCD中,DCAB,CBAB,AB=AD,CD= AB,点E、F分别为AB、AD的中点,则AEF与多边形BCDFE的面积之比为()A B C D考点:相似三角形的判定与性质;三角形的面积;三角形中位线定理10(2012钦州)图中
16、两个四边形是位似图形,它们的位似中心是()A点MB点NC点OD点P11如图,在平面直角坐标系中,以原点O为位中心,将ABO扩大到原来的2倍,得到ABO若点A的坐标是(1,2),则点A的坐标是()A(2,4)B(-1,-2)C(-2,-4)D(-2,-1)考点:位似变换;坐标与图形性质二、填空题14.正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AMMN,当BM= cm时,四边形ABCN的面积最大,最大面积为 cm2考点:相似三角形的判定与性质;二次函数的最值;正方形的性质15.如图,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ONOM,若AB=6,A
17、D=4,设OM=x,ON=y,则y与x的函数关系式为 。考点:相似三角形的判定与性质;矩形的性质16.如图,E是ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4, ,则CF的长为 2考点:相似三角形的判定与性质;平行四边形的性质17.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tanAPD的值是 2考点:相似三角形的判定与性质;勾股定理;锐角三角函数的定义18如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为 12m19.如图,在一场羽毛球比赛中,站在场内M处的
18、运动员林丹把球从N点击到了对方内的B点,已知网高OA=1.52米,OB=4米,OM=5米,则林丹起跳后击球点N离地面的距离NM= 3.42米考点:相似三角形的应用20.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= 5.5m考点:相似三角形的应用21. 如图,ABC与A1B1C1为位似图形,点O是它们的位似中心,位似比是1:2,已知ABC的面积为3,那么A1B1C1的面积是 12考点:位似变换三、解答题22己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,BAF=DAE,AE与BD交于点G(1)求证:BE=DF;(2)当 时,求证:四边形BEFG是平行四边形考点:平行线分线段成比例;全等三角形的判定与性质;平行四边形的判定;菱形的性质23如图,在ABC中,C=90°,点D是AB边上的一点,DMAB,且DM=AC,过点M作MEBC交AB于点E求证:ABCMED考点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024学校实验室设备更新及维修服务合同3篇
- 2024店铺转让协议书
- 2024模具智能制造技术研发合同
- 2024标准版两居室房车短期租赁合同版
- 2024服装工装定制合同
- 2024青岛运动会官方用车租赁服务协议3篇
- 2024年行车设备安装与维护合同3篇
- 2024年版城市供水项目特许经营权协议
- 2024运营总监国际业务拓展与跨国合作合同3篇
- 2025年度网络安全技术股权合作与转让合同3篇
- RB-T 099-2022 进口食品供应商评价技术规范
- 儿童ERCP的应用及技巧课件
- 《低压电工技术》课程标准
- 22G101系列图集常用点全解读
- (国家基本公共卫生服务项目第三版)7高血压患者健康管理服务规范
- 12 富起来到强起来 精神文明新风尚(说课稿)-部编版道德与法治五年级下册
- (43)-7.2羊肚菌高效栽培
- 中级消防维保理论考试试题题库及答案
- 读书会熵减华为活力之源
- 竣工图绘制规范及标准
- 二年级上学期数学
评论
0/150
提交评论