上海大学数值分析历届考题_第1页
上海大学数值分析历届考题_第2页
上海大学数值分析历届考题_第3页
上海大学数值分析历届考题_第4页
上海大学数值分析历届考题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流上海大学数值分析历届考题.精品文档.数值分析历届考题03-04学年秋季学期一 简答题(每小题5分)1. 数值计算中要注意哪些问题。答:第一、两个相近的数应避免相减。第二、绝对值很小的数应避免作除数。第三、注意选取适当的算法减少运算次数。第四、两个绝对值相差很大的数运算时,注意“机器零”的问题。第五、注意算法的收敛性和稳定性。2. 用迭代法求解非线性方程时,迭代收敛的条件是什么,可以用什么方法来确定初值。答:对于非线性方程(其迭代格式为),如果满足:(1) 当时,;(2) 在上连续,且对任意的都有。则有结论:对任意给定的,由迭代格式,k=0,1

2、,2,产生的序列收敛于,即迭代收敛。可以用二分法来确定初值。3. 用消元法求解线性方程组时,为什么要选主元。答:因为用简单高斯消元法求得的近似解与精确解相差甚远,其主要原因是绝对值很小的数作除数,导致了误差的快速增长。为了避免这种情况的发生,我们可以通过行交换,在需要消元的列中,取绝对值最大者作为主对角线元素(即主元),计算效果将得到改善。4. 矩阵的条件数是什么,它对求解线性方程组有什么影响。答:对于n阶可逆方阵A,正实数|称为A的条件数,记为cond(A)。条件数对于线性方程组Ax=b的影响如下:,其中为A精确时b产生的误差;,其中为b精确时A产生的误差。5. 把下列二阶常微分方程的初值问

3、题化为一阶常微分方程组,并写出求解该方程的改进Euler方法。答:令则,其中。所以用改进的Euler方法表示为:二 (20分)给出数据表x012f(x)212f(x)-1求一个满足插值条件的三次插值多项式,并写出余项公式。解:先求出满足函数值插值条件,i=0,1,2的二次插值多项式。ixf(x)一阶差商二阶差商102211-132211由牛顿插值公式:令,其中A是待定常数,则,由已知条件,代入可得:所以。其插值余项为,其中。三 (20分)给出数据表x0.10.20.40.5y10.80240.61740.53023用最小二乘法求拟合曲线(保留3位小数)。解:对于曲线,令,得。把x,y的数据转换

4、为t,z的数据(取3位有效数字):t=1/x2.002.505.0010.0z=1/y1.891.621.251.00对于,其法方程组为:其中:数据代入后得法方程组为;解得。所以拟合曲线为。四 (15分)确定下列求积公式的系数,使公式成为Guass型求积公式解:通过待定系数法:当时,有(1)当时,有(2)当时,有(3)由此得到一个关于未知数,的线性方程组:;解得。五 (20分)证明:对任意参数t()下列求解常微分方程初值问题的算法,其局部截断误差都是c:证:令,则(1)对作泰勒展开得:代入到(1)式中:由于在的条件下。即对任意参数t,上述求解微分方程初值问题的算法其局部截断误差都是。六 (16

5、分)证明:下列求解常微分方程初值问题的数值方法,其局部截断误差为。证:在的条件下将上述两式代入中,可得:由于在的条件下。所以上述求解微分方程初值问题的算法其局部截断误差都是。05-06学年秋季学期一 简答题(每小题4分,共20分)1. 设x=0.06020,y=0.0418是按四舍五入得到的近似值,则x+y,xy的绝对误差限,相对误差限,有效数字各是多少。答:,;所以x+y三位有效,;所以x/y三位有效,2. 同03-04学年秋季学期第一题33. 在解线性方程组时,原始数据的误差对解的影响如何;对病态方程组可以采用什么方法处理。答:原始数据的误差对于线性方程组Ax=b的影响如下:,其中为A精确

6、时b产生的误差;,其中为b精确时A产生的误差;其中cond(A)=|为条件数。对于病态方程组,可以使用迭代改善的方法处理。4. 给出三个等距节点,及其相应的函数值,试导出二阶数值导数的计算公式。答:以这三个点为节点的基本插值多项式为:求二阶导得:,设,i=0,1,2。则。5. 用数值方法求解常微分方程时,怎样选择合适的步长。答:先选取一个步长h,计算和,如果,则将步长逐次减半,直到为止。如果对于初始步长h,就有,则尝试将步长逐次加倍,知道满足的最大步长。二 (16分)给出数据表x123f(x)2412f(x)3求一个3次插值多项式;并证明其余项公式为解:先求出满足函数值插值条件,i=0,1,2

7、的二次插值多项式。ixf(x)一阶差商二阶差商1122242331283由牛顿插值公式:令,其中A是待定常数,则,由已知条件,代入可得:所以。由插值条件可知,是R(x)的二重零点,和是R(x)的单重零点,所以,其中K(x)是待定函数。令,当的4阶导数连续时,反复用罗尔定理,可得,所以。三 (16分)给出一组数据X1.001.251.501.752.00Y8.467.456.535.795.10用最小二乘法求拟合曲线。解:对于曲线,两边取对数得:令,则可得到:把x,y的数据转换为t,z的数据(取3位有效数字):t=1/x0.5000.5710.6670.8001.00z=lny1.631.761

8、.882.012.14对于,其法方程组为:其中:数据代入后得法方程组为;解得。所以拟合曲线为。四 (16分)用龙贝格方法求下列积分,要求5位有效数字。解:;五 (16分)对于非线性方程f(x)=0,求证:改进的牛顿迭代格式:,k=0,1,在单根附近是至少三阶收敛的。并判别该方法对重根是几阶收敛。解:(1)在单根的情况下,设是的单重根。所以是的二重零点,即该迭代格式是三阶收敛的。(2)在重根的情况下,设是的m重根。(m1)则,且,同理:这时:由于m为大于1的整数,所以显然,所以在重根情况下题设迭代法线性收敛。(一阶收敛)06-07学年冬季学期一、 简答题(每小题4分,共20分)1. 设x=-0.

9、0307,y=1.230是按四舍五入得到的近似值,则x-y,x/y的绝对误差限,相对误差限,有效数字各是多少。答:,;所以x-y三位有效,;所以x/y三位有效,2. 插值型数值积分方法的基本原理是什么,其截断误差是什么。答:基本原理:,其中是的n次插值多项式。截断误差:3. 写出求解非线性方程组,i=1,2,n一般迭代法的迭代格式和收敛条件。答:一般迭代法的格式:,i=1,2,n,其中:是的等价方程。当,时收敛。4. 同03-04秋季学期第一题45. 把下列二阶常微分方程的初值问题化为一阶常微分方程组的初值问题,并写出数值求解的欧拉格式。答:令则,其中。所以用欧拉形式表示为:,i=0,1,2,

10、n-1。二、 (16分)给出数据表x012f(x)129f(x)3用3次插值多项式求f(1.5)的近似值,并估计误差:解:先求出满足函数值插值条件,i=0,1,2的二次插值多项式。ixf(x)一阶差商二阶差商101212132973由牛顿插值公式:令,其中A是待定常数,则,由已知条件,代入可得:所以。三、 (16分)给出一组数据x1.001.251.501.752.00y5.105.796.537.458.46用最小二乘法求拟合曲线。解:对于曲线,两边取对数得:令,则可得到:把x,y的数据转换为t,z的数据(取3位有效数字):x1.001.251.501.752.00z=lny1.631.761.882.012.14对于,其法方程组为:其中:数据代入后得法方程组为;解得。所以拟合曲线为。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论