版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、等差数列前n项和教案(高一年级第一册·第三章第三节)一、教材分析 教学内容等差数列前n项和人教版高中教材第三章第三节“等差数列前n项和”的第一课时,主要内容是等差数列前n项和的推导过程和简单应用 地位与作用 高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。 在推导等差数列前n项和公式的过程中,采用了:1.从特殊到一般的研究方法;2.逆序相加求和。不仅得出了等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。 等差数列前n项和是学习极限、微积分的基础,与数学课程的其它内容(函数、三角
2、、不等式等)有着密切的联系。 二、学情分析 知识基础:高一年级学生已掌握了函数,数列等有关基础知识,并且在初中已了解特殊的数列求和。 认知水平与能力:高一学生已初步具有抽象逻辑思维能力,能在教师的引导下独立地解决问题。 任教班级学生特点:我所任教的班级是普通班级,学生基础知识不是很扎实,处理抽象问题的能力还有待进一步提高.三、目标分析1、教学目标依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标 知识与技能目标 掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。过程与方法目标经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会
3、观察、归纳、反思。情感、态度与价值观目标获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。2、教学重点、难点根据教学内容和本校学生特点,我确定本节课的教学重点为: 重点等差数列前n项和公式的推导和应用. 难点 等差数列前n项和公式的推导过程中渗透倒序相加的思想方法。 重、难点解决的方法策略本课在设计上采用了由特殊到一般、从具体到抽象的教学策略利用数形结合、类比归纳的思想,层层深入,通过学生自主探究,分析、整理出推导公式的不同思路,同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破教学难点四、过程设计结合教材知
4、识内容和教学目标,本课的教学环节及时间分配如下: 公式应用与议练活动(1)(5分钟)探究等差数列前n项和公式(18分钟)创设情景提出问题(2分钟) 公式应用与议练活动(2)(9分钟) 归纳总结(2分钟)公式的认识与理解(4分钟) 五、教学过程教学环节教 师 活 动 学 生 活 动活 动说 明新课引入创设情境:首先让学生欣赏一幅美丽的图片泰姬陵。泰姬陵是印度著名的旅游景点,传说中陵寝中有一个三角形的图案嵌有大小相同的宝石,共有100层,同时提出第一个问题:你能计算出这个图案一共花了多少颗宝石吗?也即计算1+2+3+.+100=?现实模型: 图片欣赏 生活实例模 型直 观用实际生活引入新课。探 索
5、 公 式探 索 公 式议练活动议练活动课 堂总结首先认识一位伟大的数学家高斯,然后提出问题:高斯是如何快速计算1+2+3+4+.+100?分析高斯求法得出的式子,发现Sn= 12398+99+100 (1)Sn=10099983 + 2+ 1 (2)(1)+(2)得:设等差数列前n项和为 ,则 问题1老师:利用高斯算法如何求等差数列的前n项和公式?老师:但是否刚好配对成功呢?但是对n讨论麻烦了,能否有更好的方法求前n项和公式呢?接下来给出实际问题:伐木工人是如何快速计算堆放在木场的木头根数呢? 问题2:如何用倒置的思想求等差数列前n项和呢?方法一:两式相加得:方法二同样利用倒序相加求和法,教材
6、做了如下处理:两式相加得:引导学生带入等差数列的通项公式,换掉 整理得到公式2。能否给求和公式一个几何解释呢? 教师提示将求和公式与梯形建立联系。 例1:某长跑运动员天里每天的训练量(单位:m)是:750080008500900095001000010500这位长跑运动员天共跑了多少米? 本例提供了许多数据信息,学生可以从首项、末项、项数出发,使用公式1,也可以从首项、公差、项数出发,使用公式2求和。剖析公式: 教师提示,从方程中量的关系入手。例2 等差数列-10,-6,-2,2, 前多少项的和为54?本例已知首项,前n项和、并且可以求出公差,利用公式2求项数。 事实上,在两个求和公式中各包含
7、四个元素,从方程的角度,知三必能求余一。例3在等差数列中,已知 ,求。本小题主要考察了对公式一的整体应用。根据课堂剩余时间,本题作为机动练习,(2)小问留给学生课后完成1、教师引导学生归纳总结本节课所学习的主要内容动手体验,反馈信息(2个练习题)1.在等差数列中,若,求2.课后作业:A必做题 教材118页:练习、;习题3.3第题(、)B选做题:在等差数列中,学生:1+100=101,2+99=101,.50+51=101,所以原式=50(1+101)=5050学生: 通过等式变形,可把一组数求和看作先求得两组完全相同的数组的和再除以2即可学生:将首末两项配对,第二项与倒数第二项配对,以此类推,
8、每一对的和都相等,并且都等于 。学生:不一定,需要对n取值的奇偶进行讨论。当n为偶数时刚好配对成功。 当n奇数时,中间的一项落单了。 学生观察动画演示,不难发现用倒置的思想来解决此问题。 (由上一问题的解决,学生容易想到倒序相加求和法。) 学生:利用倒序相加求和法。将中的每一项用等差数列的通项公式进行巧妙的改写,在倒序相加求和时,每一组中的d都被正负抵消了。学生类比方法一与方法二的联系与区别。学生:将求和公式与梯形面积公式建立联系。学生自己阅读教材,体会教材的解法是如何运用求和公式。 观察多媒体课件演示。 学生讨论:公式中一共含有五个量,根据三个公式之间的联系,由方程的思想,知三可求二。 学生
9、讨论分析题目所含的已知量,选取了公式2进行运算,利用了方程的思想。需要注意的是学生可能会把公差认为是-4以及解得n的值后未把n=-3舍去。本例是使用等差数列的求和公式和通项公式求未知元。 可以使用公式2,先求出首项,再使用通项公式求末项。也可以使用公式1和通项公式,联列方程组求解。 本环节由学生自主归纳、总结本节课所学习的主要内容,教师加以补充说明(1)回顾从特殊到一般,一般到特殊的研究方法.(2)体会等差数列的基本元表示方法,倒序相加的算法,及数形结合的数学思想.(3)掌握等差数列的两个求和公式及简单应用。 高斯求和众所周知,学生能快速解答。 这里用到了等差数列脚标和性质 从高斯算法出发,对n进行讨论寻找求和公式思路自然,学生容易想到。倒序相加求和法是重要的数学思想,为以后数列求和的学习做好了铺垫。在等差数列前n项和公式的推导过程中,通过问题获得知识,让学生经历“发现问题提出问题解决问题”的过程利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年软件开发知识产权服务合同范本
- 住宅买卖委托代理合同
- 施工场地文明施工责任书
- 【初中地理】第二章地图基础诊断卷 2024-2025学年人教版地理七年级上册
- 人才发展合作方案协议
- 艺术家工作室合伙协议书样本
- 专业庭院绿化施工合同示范
- 小产权房买卖合同汇编
- 2024年财务会计保密协议
- 投资公司劳务合同范本
- 板块轮动与龙头股战法原理
- 雅鲁藏布江大拐弯巨型水电站规划方案
- 国家开放大学《心理与健康》形考任务1-3参考答案
- 饲料行业会计科目表B
- 河北省保定市药品零售药店企业药房名单目录
- 广西基本医疗保险门诊特殊慢性病申报表
- 分包单位资格报审表-填写模板
- 城市经济学习题与答案
- 马工程《马克思主义发展史》课后习题答案
- 《培养良好的卫生习惯》主题班会(30张)课件
- 医学学员沟通和接诊能力面试评分表
评论
0/150
提交评论