第1课时集合的含义_第1页
第1课时集合的含义_第2页
第1课时集合的含义_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、听课随笔第一章 集合一、知识结构集合定义、性质、运用交集、并集集合的定义及其表示子集、全集、补集集合中元素的特性集合的分类集合的表示法定义、性质、运用二、重点难点重点:集合的表示方法;子集的概念;集合的交、并运算;难点:集合概念的理解;集合的补集运算;交与并的区别;第一课时 集合的含义【学习导航】 确定性知识网络 互异性集合定义无序性元素的特性集合有限集无限集集合的分类空集学习要求 1初步理解集合的含义,常用数集及其记法;2集合中的元素的特性;3理解属于关系和相等的意义;集合的分类;4集合的分类.【课堂互动】自学评价1集合的含义: 构成一个集合(set).注意:(1)集合是数学中原始的、不定义

2、的概念,只作描述. (2)集合是一个“整体.(3)构成集合的对象必须是“确定的”且“不同”的 2集合中的元素: 集合中的每一个对象称为该集合的元素(element).简称元.集合一般用大写拉丁字母表示,如集合A, 元素一般用小写拉丁字母表示.如a,b,c等.思考:构成集合的元素是不是只能是数或点?【答】 3集合中元素的特性: (1)确定性.设A 是一个给定的集合,x是某一元素,则x是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立. (2)互异性.对于一个给定的集合,它的任何两个元素都是不同的. (3)无序性.集合与其中元素的排列次序无关.4常用数集及其记法: 一般地,自然数集记作_

3、正整数集记作_或_整数集记作_有理数记作_实数集记作_5元素与集合的关系:如果a是集合A的元素,就记作_读作“_”;如果a不是集合A的元素,就记作_或_读作“_”;6集合的分类:按它的元素个数多少来分:(i) _叫做有限集;(ii)_叫做无限集;(iii) _叫做空集,记为_【精典范例】一、运用集合中元素的特性来解决问题例1下列研究的对象能否构成集合 (1)世界上最高的山峰 (2)高一数学课本中的难题 (3)中国国旗的颜色 (4)充分小的负数的全体 (5)book中的字母 (6)立方等于本身的实数(7)不等式2x-8<13的正整数解【解】点评:判断一组对象能否组成集合关键是能否找到一个明

4、确的标准,按照这个确定的标准,它要么是这个集合的元素,要么不是这个集合的元素,即元素确定性.例2:集合M中的元素为1,x,x2-x,求x的范围?分析:根据集合中的元素互异性可知:集合里的元素各不相同,联列不等式组.点评: 元素的特性(特别是互异性)是解决问题的切入点.例3:三个元素的集合1,a,也可表示为0,a2,a+b,求a2005+ b2006的值听课随笔分析:三个元素的集合也可表示另外一种形式,说明这两个集合相同,而该题目从特殊元素0入手,可以省去繁琐的讨论点评:从特殊元素入手,灵活运用集合的三个特征 二、运用元素与集合的关系来解决一些问题例4:集合A中的元素由x=a+b(aZ,bZ)组

5、成,判断下列元素与集合A的关系? (1)0 (2) (3)分析:先把x写成a+b的形式,再观察a,b是否为整数.点评: 要判断某个元素是否是某个集合的元素,就是看这个元素是否满足该集合的特性或具体表达形式.例5:不包含-1,0,1的实数集A满足条件aA,则A,如果2A,求A中的元素?分析:该题的集合所满足的特征是由抽象的 语句给出的,把2这个具体的元素代入求出A的另一个元素,但该题要循环代入,求出其余的元素,同学们可能想不到.追踪训练1下列研究的对象能否构成集合 某校个子较高的同学; 倒数等于本身的实数 所有的无理数 讲台上的一盒白粉笔 中国的直辖市中国的大城市 2下列写法正确的是_ Q 当nN时,由所有(-1)n的数值组成的集合为无限集 R -1Z 由book中的字母组成的集合与元素k,o,b组成的集合是同一个集合 把正确的序号填在横线上 3用或填空 1_N -3_N 0_N _N 1_Z -3_Q 0_Z _R听课随笔 0_N* _R _Q cos300_Z 4 由实数-x,|x|,x,组成的集合最多含有元素的个数是_个【选修延伸】例6:设S是满足下列两个条件的实数所构成 的集合: 1S,若,则,请解答下列问题:(1)若2S,则S中必有另外两个数,求出这两个数;(2)求证:若,则(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论