二项式定理典型例题22237_第1页
二项式定理典型例题22237_第2页
二项式定理典型例题22237_第3页
二项式定理典型例题22237_第4页
二项式定理典型例题22237_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高考数学专题复习二项式定理练习题1. 在二项式的展开式中,前三项的系数成等差数列,求展开式中所有有理项分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决解:二项式的展开式的通项公式为:前三项的得系数为:,由已知:,通项公式为为有理项,故是4的倍数,依次得到有理项为说明:本题通过抓特定项满足的条件,利用通项公式求出了r的取值,得到了有理项类似地,的展开式中有多少项是有理项?可以通过抓通项中r的取值,得到共有系数和为2.(1)求展开式中的系数;(2)求展开式中的常数项分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(

2、2)可以经过代数式变形转化为二项式解:(1)展开式中的可以看成下列几种方式得到,然后合并同类项:用展开式中的常数项乘以展开式中的项,可以得到;用展开式中的一次项乘以展开式中的项可得到;用中的乘以展开式中的可得到;用 中的项乘以展开式中的项可得到,合并同类项得项为:(2)由展开式的通项公式,可得展开式的常数项为说明:问题(2)中将非二项式通过因式分解转化为二项式解决这时我们还可以通过合并项转化为二项式展开的问题来解决3. 求展开式中的系数分析:不是二项式,我们可以通过或把它看成二项式展开解:方法一: 其中含的项为含项的系数为6方法二:其中含的项为项的系数为6方法3:本题还可通过把看成6个相乘,每

3、个因式各取一项相乘可得到乘积的一项,项可由下列几种可能得到5个因式中取x,一个取1得到3个因式中取x,一个取,两个取1得到1个因式中取x,两个取,三个取1得到合并同类项为,项的系数为64.求证:(1);(2)分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质解:(1)左边 右边(2)左边 右边说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项

4、式定理才能完成,所以需仔细观察,我们可以看下面的例子:求的结果仔细观察可以发现该组合数的式与的展开式接近,但要注意: 从而可以得到:5.利用二项式定理证明:是64的倍数分析:64是8的平方,问题相当于证明是的倍数,为了使问题向二项式定理贴近,变形,将其展开后各项含有,与的倍数联系起来解:是64的倍数说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数8.若将展开为多项式,经过合并同类项后它的项数为()A11B33C55D66分析:看作二项式展开解:我们把看成,按二项式展开,共有“项”,即这时,由于“和”中各项的指数各不相同,因此再将各个二项式展

5、开,不同的乘积()展开后,都不会出现同类项下面,再分别考虑每一个乘积()其中每一个乘积展开后的项数由决定,而且各项中和的指数都不相同,也不会出现同类项故原式展开后的总项数为,应选D9.若的展开式的常数项为,求分析:题中,当时,把三项式转化为;当时,同理然后写出通项,令含的幂指数为零,进而解出解:当时,其通项为,令,得,展开式的常数项为;当时,同理可得,展开式的常数项为无论哪一种情况,常数项均为令,以,逐个代入,得10.的展开式的第3项小于第4项,则的取值范围是_分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可解:使有意义,必须;依题意,有,即()解得的取值范围是应填:

6、11.已知的展开式中有连续三项的系数之比为,这三项是第几项?若展开式的倒数第二项为,求的值解:设连续三项是第、项(且),则有,即,所求连续三项为第、三项又由已知,即两边取以为底的对数,或说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解12.的展开式中第项与第项的系数相等,求展开式中二项式系数最大的项和系数最大的项分析:根据已知条件可求出,再根据的奇偶性;确定二项式系数最大的项解:,依题意有的展开式中,二项式系数最大的项为设第项系数最大,则有或()系娄最大的项为:,说明:(1)求二项式系数最大的项,根据二项式系数的性质,为奇数时

7、中间两项的二项式系数最大,为偶数时,中间一项的二项式系数最大(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得13.设(),若其展开式中关于的一次项的系数和为,问为何值时,含项的系数取最小值?并求这个最小值分析:根据已知条件得到的系数关于的二次表达式,然后利用二次函数性质探讨最小值问题解:,或,或时,项系数最小,最小值为说明:二次函数的对称轴方程为,即,由于、距等距离,且对,、距最近,所以的最小值在或处取得14.若,求(1) ;(2) ;(3) 解:(1)令,则,令,则(2)令,则由得:(3)由得:说明:(1)本解法根据

8、问题恒等式特点来用“特殊值”法这是一种重要的方法,它适用于恒等式(2)一般地,对于多项式,的各项的系数和为:的奇数项的系数和为的偶数项的系数和为18.在的展开式中的系数为()A160B240C360D800分析:本题考查二项式定理的通项公式的运用应想办法将三项式转化为二项式求解解法1:由,得再一次使用通项公式得,这里,令,即所以,由此得到的系数为解法2:由,知的展开式中的系数为,常数项为,的展开式中的系数为,常数项为因此原式中的系数为解法3:将看作个三项式相乘,展开式中的系数就是从其中一个三项式中取的系数,从另外个三项式中取常数项相乘所得的积,即应选B19.已知的展开式中的系数为,常数的值为_

9、分析:利用二项式的通项公式解:在的展开式中,通项公式为根据题设,所以代入通项公式,得根据题意,所以应填:20.若,求证明:能被整除分析:考虑先将拆成与的倍数有关的和式,再用二项式定理展开解:,均为自然数,上式各项均为的整数倍原式能被整除说明:用二项式定理证明整除问题,大体上就是这一模式,先将某项凑成与除数有关的和式,再展开证之该类题也可用数学归纳法证明,但不如用二项式定理证明简捷21.已知的展开式各项系数和比它的二项式系数和大(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项分析:先由条件列方程求出(1)需考虑二项式系数的性质;(2)需列不等式确定解:令得展开式的各项系数之和为,而展开式的二项式系数的和为,有(1),故展开式共有,其中二项式系数最大的项为第三、第四两项,(2)设展开式中第项的系数最大,故有即解得,即展开式中第项的系数最大说明:展开式中二项式系数最大的项与系数最大的项是两个不同的概念,因此其求法亦不同前者用二项式系数的性质直接得出,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论