![181923 233 时 等比数列的前n项和_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/bb01d740-439f-40a9-a4a9-9733ac2c00e0/bb01d740-439f-40a9-a4a9-9733ac2c00e01.gif)
![181923 233 时 等比数列的前n项和_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/bb01d740-439f-40a9-a4a9-9733ac2c00e0/bb01d740-439f-40a9-a4a9-9733ac2c00e02.gif)
![181923 233 时 等比数列的前n项和_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/bb01d740-439f-40a9-a4a9-9733ac2c00e0/bb01d740-439f-40a9-a4a9-9733ac2c00e03.gif)
![181923 233 时 等比数列的前n项和_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/bb01d740-439f-40a9-a4a9-9733ac2c00e0/bb01d740-439f-40a9-a4a9-9733ac2c00e04.gif)
![181923 233 时 等比数列的前n项和_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/bb01d740-439f-40a9-a4a9-9733ac2c00e0/bb01d740-439f-40a9-a4a9-9733ac2c00e05.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.3.3等比数列的前n项和第1课时等比数列的前n项和学习目标:1.掌握等比数列前n项和公式;能用公式解决一些简单问题(重点)2.能在具体的问题情境中,发现数列的等比关系,并能用有关知识解决相应的问题(难点)3.不对q分析范围而错用求和公式(易错点)自 主 预 习探 新 知1等比数列的前n项和公式设数列an为等比数列,首项为a1,公比为q,则其前n项和S n思考1:若数列an的前n项和Sn2n1,那么数列an是不是等比数列?若数列an的前n项和Sn2n11呢?提示当Sn2n1时,an是等比数列;当Sn2n11时,an不是等比数列思考2:等比数列的前n项和公式有何函数特征?提示当公比q1时,设A
2、,等比数列的前n项和公式是SnA(qn1)当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数2等比数列前n项和的性质(1)等比数列an中,SmnSnqnSmSmqmSn.(2)等比数列an中,若项数为2n,则q;若项数为2n1,则q.(3)设数列an是等比数列,Sn是其前n项和当q1且k为偶数时,Sk,S2kSk,S3kS2k不是等比数列;当q1或k为奇数时,数列Sk,S2kSk,S3kS2k(kN*)是等比数列基础自测1在等比数列an中,a12,S326,则公比q_.解析q1,S326,q2q120,q3或4.答案3或42设an是公比为正数的等比数列,若a11,a516,则数列a
3、n的前7项和为_解析a5a1q4,q424.q0,q2,S7127.答案1273在等比数列an中,若Sn是其前n项和,且S43,S89,则S12_.解析S4,S8S4,S12S8成等比数列,3,6,S129成等比数列,3(S129)36,S1221.答案21合 作 探 究攻 重 难等比数列前n项和的基本运算在等比数列an中,(1)若Sn189,q2,an96,求a1和n;(2)若a1a310,a4a6,求a4和S5;(3)若q2,S41,求S8.思路探究利用公式Sn求解解(1)由公式Sn及条件得189,解得a13,又由ana1qn1,得9632n1,解得n6.(2)设公比为q,由通项公式及已知
4、条件得即a10,1q20,得,q3,即q,a18,a4a1q381,S5.(3)设首项为a1,q2,S41,1,即a1,S817.规律方法1等比数列的前n项和公式和通项公式中共涉及a1,an,q,n,Sn五个基本量,已知其中三个量,可以求出另外的两个量,我们可以简称为“知三求二”2已知an时用Sn较简便,而Sn在将已知量表示为最基本元素a1和q的表达式中发挥着重要作用提醒:两式相除是解决等比数列基本量运算常用的运算技巧跟踪训练1求下列等比数列前8项的和(1),;(2)a127,a9,q0. 【导学号:57452056】解(1)因为a1,q,所以S8.(2)由a127,a9,可得27q8.又由q
5、0,可得q.所以S8.等比数列前n项和的性质及应用在等比数列an中,若前10项的和S1010,前20项的和S2030,求前30项的和S30.思路探究法一:由列方程组求得q值,整体代换求S30;法二:利用前n项和的性质,连续10项之和成等比数列,求S30.解法一:设数列an的首项为a1,公比为q,显然q1,则两式相除得1q103,q102.S30(1q10q20)10(124)70.法二:S10,S20S10,S30S20仍成等比数列,又S1010,S2030,S3030,即S3070.规律方法要注意等比数列前n项和性质的使用条件,条件不具备时,性质不一定成立,如Sm,S2mSm,S3mS2m,
6、满足(S2mSm)2Sm(S3mS2m),但Sm,S2mSm,S3mS2m不一定成等比数列,只有在一定的限制条件下才成等比数列.提醒:易误认为Sn,S2n,S3n成等比数列.跟踪训练2(1)设等比数列an的前n项和为Sn,若3,则_.(2)等比数列 an共有2n项,其和为240,且奇数项的和比偶数项的和大80,则公比q_.解析(1)设公比为q,则1q33,所以q32,于是.(2)S奇80,S偶160,q2.答案(1)(2)2等比数列前n项和的实际应用探究问题1银行储蓄中的按“复利”计算是什么意思?并举例说明提示所谓“复利”,即把上期的本利和作为下一期的本金如把a万元现金存入银行,按年息P%计算
7、,n年后的本利和为a(1P%)n1万元2“分期付款”是怎么一回事?提示(1)分期付款为复利计息,每期付款数相同,且在期末付款;(2)到最后一次付款时,各期所付的款额的本利之和等于商品售价的本利之和借贷10 000元,以月利率为1%,每月以复利计算借贷,王老师从借贷后第二个月开始等额还贷,分6个月付清,试问每月应支付多少元?(1.0161.061,1.0151.051)思路探究结合分期付款的定义求解本题解一方面,借款10 000元,将此借款以相同的条件存储6个月,则它的本利和为S1104(10.01)6104(1.01)6(元)另一方面,设每个月还贷a元,分6个月还清,到贷款还清时,其本利和为S
8、2a(10.01)5a(10.01)4aa1.0161102(元)由S1S2,得a.1.0161.061,a1 739.故每月应支付1 739元规律方法解决此类问题的关键是建立等比数列模型及弄清数列的项数,所谓复利计息,即把上期的本利和作为下一期本金,在计算时每一期本金的数额是不同的,复利的计算公式为SP(1r)n,其中P代表本金,n代表存期,r代表利率,S代表本利和.提醒:解决数列应用问题,要明确问题属于哪一种类型,即明确是等差数列问题还是等比数列问题,是求an还是Sn,特别是要弄清项数.跟踪训练3小华准备购买一台售价为5 000元的电脑,采用分期付款方式,并在一年内将款全部付清商场提出的付
9、款方式为:购买2个月后第1次付款,再过2个月后第2次付款,购买12个月后第6次付款,每次付款金额相同,约定月利率为0.8%,每月利息按复利计算,求小华每期付款金额是多少解法一:设小华每期付款x元,第k个月末付款后的欠款本利为Ak元,则:A25 000(10.008)2x5 0001.0082x,A4A2(10.008)2x5 0001.00841.0082xx,A125 0001.00812(1.008101.00881.00821)x0,解得x880.8.故小华每期付款金额约为880.8元法二:设小华每期付款x元,到第k个月时已付款及利息为Ak元,则:A2x;A4A2(10.008)2xx(
10、11.0082);A6A4(10.008)2xx(11.00821.0084);A12x(11.00821.00841.00861.00881.00810)年底付清欠款,A125 0001.00812,即5 0001.00812x(11.00821.00841.00810),x880.8.故小华每期付款金额约为880.8元当 堂 达 标固 双 基1已知Sn是等比数列an的前n项和,a52,a816,则S6等于_. 【导学号:57452057】解析q3(2)3,q2,a1(2)(2)4(2)3,S6.答案2等比数列的公比为2,前4项之和等于10,则前8项之和等于_解析(S8S4)S42416,(S810)1016,S8170.答案1703一弹性球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和为_米(结果保留到个位)解析设所经过的总路程为s,第n1次落下至第n次落下经过的路程为an,则a1100,a2250,a3225,a102100,设第二项至第十项的和为T,由等比数列求和公式得T2199.6.所以S100T299.6300(米)答案3004已知数列an是递增的等比数列,a1a49,a2a38,则数列an的前n项和等于_解析设等比数列的公比为q,则有解得或又an为递增数列,Sn2n1.答案2n15已知等差数列an和等比数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育培训机构评估居间合同
- 纺织品交易居间合同协议书
- 2025年度办公室日常保洁与节能照明设备供应服务合同
- 广告投放数据分析合同
- 产品包装设计技术指南
- 安全生产托管协议合同
- 工矿企业产品购销合同
- 厨房承包协议集锦
- 农业质量标准制定指南
- 能源行业能源供应链优化与智能仓储管理
- 吲哚菁绿血管造影检查知情同意书
- 最新婚姻家庭心理讲座主题讲座课件
- 无损检测超声波探伤检测方案
- 浙江省温州市地图矢量PPT模板(图文)
- DB32∕T 2948-2016 水利工程卷扬式启闭机检修技术规程
- 建筑施工图设计教程
- 高中化学必修一复习提纲
- 工程款支付报审表
- 同位角内错角同旁内角专项练习题有答案
- 管理信息系统数据流程图和业务流程图经典作品
- 常用抗凝药物的应用及护理PPT课件
评论
0/150
提交评论