版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三章 中值定理与导数的应用1. 验证拉格朗日中值定理对函数在区间上的正确性。解:函数在区间上连续,在区间内可导,故在上满足拉格朗日中值定理的条件。又,解方程得。因此,拉格朗日中值定理对函数在区间上是正确的。2不求函数的导数,说明方程有几个实根,并指出它们所在的区间。解:函数可导,且。由罗尔定理知,至少存在使即方程有至少三个实根。又因方程为三次方程,故它至多有三个实根。因此,方程有且只有三个实根,分别位于区间内。3若方程 有一个正根 证明:方程必有一个小于的正根。解:取函数。上连续,在内可导,且由罗尔定理知至少存在一点使即方程必有一个小于的正根。4设 求证不等式: 证明:取函数在a,b上连续,
2、在(a, b)内可导,由拉格朗日中值定理知,至少存在一点,使,即,故5设在上连续,在内可导,证明存在使 证明:取函数,则在上连续,在内可导,由柯西中值定理知,存在,使,即。6证明恒等式: 证明:取函数,则. 则因为,故。7证明:若函数在内满足关系式且 则.证明:故,又8用洛必达法则求下列极限(1) 解:(2) 解:(3) 解: (4)解: (5)解:(6) 解:(7) 解: (8)解:因为,而.所以(9)解:因为,而,所以,9. 验证 存在,但是不能用洛必达法则求出。解:由于不存在,故不能使用洛必达法则来求此极限,但不表示此极限不存在,此极限可如下求得:。10. 当时,求函数的阶泰勒公式。解:
3、因为故其中介于x与之间.11. 求函数的阶麦克劳林公式。解:因为故其中介于x与0之间。12 确定函数的单调区间。解:函数除外处处可导,且令,得驻点这两个驻点及点把区间分成四个部分区间当时,因此函数在内单调减少。当时,因此函数在内单调增加。13证明不等式:当时, 证明:取函数因此,函数在上单调增加,故当时,即亦即,当时,14. 设在时都取得极值,试确定的值,并判断在是取得极大值还是极小值?解: ,在取得极值,则,故又因,故,所以在时取得极大值;,所以在时取得极小值。15求函数在闭区间上的最大值与最小值。解:函数除外处处可导,令,得驻点又因,故,最小值为,最大值为。16某地区防空洞的截面拟建成矩形
4、加半圆。截面的面积为问底宽为多少时,才能使截面的周长最小,从而使建造时所用的材料最省?解:设界面周长为,已知及即故令,得驻点由知为极小值点。又因为驻点唯一,故极小值点就是最小值点。所以,当截面的底宽为时,才能使截面的周长最小,从而使建造时所用的材料最省。17求函数图形的拐点及凹或凸的区间。解:令,得。当时,因此函数在内是凸的;当时,因此函数在内是凹的;当时,因此函数在内是凸的。曲线有两个拐点,分别为18利用函数图形的凹凸性,证明: 证明:取函数则当时,故函数在上是凹的,故对任何,恒有即19试决定曲线中的 使为驻点,为拐 点,且通过.解:由题设知,即.解得20描绘函数的图形。解:(1)定义域; (2).(3)列表如下:x0(0,1)1-0+不存在-0+不存在+拐点极小值 (4),. x=1是垂直渐近线;y=0是水平渐近线. (5)取辅助点.(6)作图:21求椭圆在点处的曲率及曲率半径。解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年跨国搬家物流合同3篇
- 人体工程学家具研发合作合同
- 二零二五年医院食堂餐饮承包服务合同
- 2025年度杭州技师学院产学研合作协议2篇
- 2025年度特许经营权转让合同:某城市公交车路线3篇
- 2025年度电动三轮车所有权转让合同样本3篇
- 二零二五年度建筑工程质量纠纷处理合同下载3篇
- 企业品牌形象设计委托合同
- 二零二五年度建设项目环境保护与安全生产监管协议
- 2024年酒店宾客服务条款详细合同一
- SB/T 10412-2007速冻面米食品
- 数控线切割机床的手工编程
- -油水井小修工艺技术课件
- (完整版)儿童医学康复科疾病护理常规
- 2022阀门制造作业指导书
- 科技创新社团活动教案课程
- 建筑结构加固工程施工质量验收规范表格
- 部编版语文六年级上册作文总复习课件
- 无水氯化钙MSDS资料
- 专利产品“修理”与“再造”的区分
- 氨碱法纯碱生产工艺概述
评论
0/150
提交评论