版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、全等三角形的判定教学目标1知识目标: 掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等 . 2能力目标: 使学生经历探索三角形全等条件的过程,体会如何探索研究问题,并初步体会分类思想,提高学生分析问题和解决问题的能力.3思想目标: 通过画图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。教学重点、难点:重点: 利用边边边证明两个三角形全等难点: 探究三角形全等的条件教学过程 (一)复习提问1、 什么叫全等三角形?2、 全等三角形有什么性质?3 、若ABCDEF,点A与点D,点B与点E是对应点,试写出其中相等的线段和角.(二)新课讲解:问题1:如图:在AB
2、C和DEF中,AB=DE,BC=EF,AC=DF, A=D, B=E, C=F,则ABC和DEF全等吗? 问题2: ABC和DEF全等是不是一定要满足AB=DE,BC=EF,AC=DF, A=D, B=E, C=F这六个条件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角形全等吗?一个条件可分为:一组边相等和一组角相等两个条件可分为:两个边相等、两个角相等、一组边一组角相等探究一:1.只给一个条件(一组对应边相等或一组对应角相等)。只给一条边:只给一个角:60°60°60°2.给出两个条件:一边一内角:30°30°30°两内角
3、:两内角:30°30°50°50°两边:2cm2cm4cm4cm问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?3.给出三个条件三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一角相等例:画ABC,使AB=2,AC=3,BC=4画法:1画线段BC=4 2分别以A、B为圆心,以2和3为半径作弧,交于点C。则ABC即为所求的三角形把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?归纳:有三边对应相等的两个三角形全等.可以简写成 “边边边” 或“ SSS ” 用 数学语言表述:在ABC和
4、DEF中AB=DEBC=EFCA=FD ABC DEF(SSS) (三)题例训练:例1填空:、在下列推理中填写需要补充的条件,使结论成立:如图,在AOB和DOC中AO=DO(已知)_=_(已知)BO=CO(已知) AOBDOC(SSS)、如图,AB=CD,AC=BD,ABC和DCB是否全等?试说明理由。 解: ABCDCB理由如下:在ABC和DCB中 AB = DC AC = DB =ABC ( ) 例. 如下图,ABC是一个刚架,AB=AC,AD是连接A与BC中点D的支架。 求证: ABD ACD证明:D是BC中点 BD=CD 在ABD和ACD中: AB=AC (已知) AD=AD (公共边
5、) BD=CD (已证) ABDACD(SSS)证明的书写步骤:准备条件:证全等时把要用的条件要先证好;三角形全等书写步骤:1写出在哪两个三角形中2摆出三个条件用大括号括起来3写出全等结论例:如图,在四边形ABCD中AB=CD,AD=BC,求证:A= C证明:在 ABD和CDB中AB=CD(已知) AD=BC (已知)BD=DB(公共边) ABD CDB(SSS) A= C (全等三角形的对应角相等)练习:1、如图,D、F是线段BC上的两点,AB=EC,AF=ED,要使ABFECD ,还需要条件2、已知:B、E、C、F在同一直线上, AB=DE,AC=DF并且BE=CF,求证: ABC DEF小结:1、本节所讲主要内容为利用“边边边”证明两个三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年国际象棋盒项目投资价值分析报告
- 初中化学化学式和化合价课件
- 勾股定理的应用课件
- 2024年防水无石棉硅酸镁管壳项目可行性研究报告
- 2024年铂铑合金制品项目可行性研究报告
- 2024年超细球状银粉项目可行性研究报告
- 2024年中国螺旋缝高频焊钢管市场调查研究报告
- 2024年中国耐温聚醚市场调查研究报告
- 《电子设计书籍》课件
- 《北京奥运用花策略》课件
- 小学英语外研新标准四年级上册Module教学反思
- 2009-2022历年上海市松江区社区工作者招聘考试《综合素质能力测验》真题含答案2022-2023上岸必备带详解版3
- 赣美版七年级上册美术《第8课传统纹样》(一等奖课件)
- 年产15万吨PET的生产工艺设计-
- (完整word版)mbti完整93题+计分
- GB 29201-2020 食品安全国家标准 食品添加剂 氨水及液氨
- 电力企业今冬明春安全生产和火灾隐患排查整治方案
- 硫酸安全技术说明书MSDS
- 城市轨道交通服务员职业技能大赛理论试题库
- 儿科及成人营养不良筛查表(STAMP)
- 五邑大学交通工程(轨道交通电气化)专业
评论
0/150
提交评论