版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Word第第页高中数学知识点全总结(电子版)高中数学学问点全〔总结〕
一、求导数的〔方法〕
(1)基本求导公式
(2)导数的四则运算
(3)复合函数的导数
设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即_
二、关于极限
1、数列的极限:
粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:
2、函数的极限:
当自变量x无限趋近于常数时,假如函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作
三、导数的概念
1、在处的导数。
2、在的导数。
3、函数在点处的导数的几何意义:
函数在点处的导数是曲线在处的切线的斜率,
即k=,相应的切线方程是_
注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()A—1B—2C1D
四、导数的综合运用
(一)曲线的切线
函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。详细求法分两步:
(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=_
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。
如何学好高中数学方法
1、上课仔细听、认真做笔记
学习新的学问首先得通过老师的讲解,然后自己理解,这样才能通过做题稳固,不然上课不仔细听的话,下课自己做题也不会,即使自己参按例题做出来了,也会有许多地方不理解,而且自己学还很铺张时间。所以高中的同学们肯定不能轻视了上课老师讲的内容。
再有一点就是数学也是需要记笔记的,上课的时候把老师讲的书上没有的步骤都记一下,重点的内容该画的画,改写的写,千万不要觉得如今看了一眼就记住了,要知道数学的学问从高一到高三会越来越难,前面的学问相当于为后面做铺垫,尤其是高三复习的时候。所以同学们在高一高二的时候老师讲的重点的内容肯定要整理在笔记上,不然到了高三复习的时候遗忘了又得铺张时间重新做笔记。
2、以课本为主,把握课本去理解
提高数学成果主要是靠听课和做题来提高。老师讲课的重点是课本,间或会延长一下课外的学问,所以同学们在理解、学习的时候也要以课本为根据,关心自己学习。
做题的时候首先把课本上的题做会了,再去做一些参考资料上面的难题。
3、熬炼〔规律思维〕力量
学习数学假如规律思维力量不好的话,成果就很难提高。大家在做题的时候肯定要多思索,训练自己的思维速度,提升思维力量。
高中数学常用公式
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1_X2=c/a注:韦达定理
判别式b2-4a=0注:方程有相等的两实根
b2-4ac0注:方程有一个实根
b2-4ac0注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n_2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0
抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py
直棱柱侧面积S=c_h
斜棱柱侧面积S=c_h
正棱锥侧面积S=1/2c_h
正棱台侧面积S=1/2(c+c)h
圆台侧面积S=1/2(c+c)l=pi(R+r)l
球的外表积S=4pi_r2
圆柱侧面积S=c_h=2pi_h
圆锥侧面积S=1/2_c_l=pi_r_l
弧长公式l=a_ra是圆心角的弧度数r0扇形面积公式s=1/2_l_r
锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h
斜棱柱体积V=SL注:其中S是直截面面积,L是侧棱长
柱体体积公式;V=s_h圆柱体V=pi_r2h
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b^2=a^2+c^2-2accosB注:角B是边a和边c的夹角
圆的标准方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圆心坐标
圆的一般方程x^2+y^2+Dx+Ey+F=0注:D^2+E^2-4F0
抛物线标准方程y^2=2pxy^2=-2p_^2=2pyx^2=-2py
直棱柱侧面积S=c_h斜棱柱侧面积S=c_h
正棱锥侧面积S=1/2c_h正棱台侧面积S=1/2(c+c)h
圆台侧面积S=1/2(c+c)l=pi(R+r)l球的外表积S=4pi_r2
圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l
弧长公式l=a_ra是圆心角的弧度数r0扇形面积公式s=1/2_l_r
锥体体积公式V=1/3_S_H
斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长
柱体体积公式V=s_h圆柱体V=pi_r2h
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B))
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
2+4+6+8+10+12+14+…+(2n)=n(n+1)5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
常用导数公式
1、y=c(c为常数)y=0
2、y=x^ny=nx^(n-1)
3、y=a^xy=a^xlna
4、y=e^xy=e^x
5、y=logaxy=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毕业实习生自我鉴定
- 银行安全生产会议
- 在医院的实习报告范文集合七篇
- 感恩主题演讲稿锦集5篇
- 幼儿园防空防灾安全教育
- 防止金融诈骗讲座
- 学生会成员工作总结
- 2022年大学生积极分子思想汇报
- 教学设计方案范文集锦7篇
- 捐资助学倡议书范文汇编10篇
- Rexroth (博世力士乐)VFC 3610系列变频器使用说明书
- 黑龙江龙江森工集团招聘笔试题
- 大班美术教案:拉手小人教案及教学反思
- 《Python Web 企业级项目开发教程(Django 版)》课后答案
- 铜及铜合金物理冶金基础-相图、紫铜
- 智慧酒店无人酒店综合服务解决方案
- 考研英语一新题型历年真题(2005-2012)
- 健身房会籍顾问基础培训资料
- 9脊柱与四肢、神经系统检查总结
- 秀场内外-走进服装表演艺术智慧树知到答案章节测试2023年武汉纺织大学
- 【高分复习笔记】王建《现代自然地理学》(第2版)笔记和课后习题详解
评论
0/150
提交评论