版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.2002年考研数学一试题答案与解析一、填空题(1)【分析】原式(2)【分析】方程两边对两次求导得以代入原方程得,以代入得,再以代入得(3)【分析】这是二阶的可降阶微分方程.令(以为自变量),则代入方程得,即(或,但其不满足初始条件).分离变量得积分得即(对应);由时得于是积分得.又由得所求特解为(4)【分析】因为二次型经正交变换化为标准型时,标准形中平方项的系数就是二次型矩阵的特征值,所以是的特征值.又因,故(5)【分析】设事件表示“二次方程无实根”,则依题意,有而即二、选择题(1)【分析】这是讨论函数的连续性,可偏导性,可微性及偏导数的连续性之间的关系.我们知道,的两个偏导数连续是可微的充
2、分条件,若可微则必连续,故选(A).(2)【分析】由充分大时即时,且不妨认为因而所考虑级数是交错级数,但不能保证的单调性.按定义考察部分和原级数收敛.再考察取绝对值后的级数.注意发散发散.因此选(C).(3)【分析】证明(B)对:反证法.假设,则由拉格朗日中值定理,(当时,因为);但这与矛盾(4)【分析】因为,说明方程组有无穷多解,所以三个平面有公共交点且不唯一,因此应选(B).(A)表示方程组有唯一解,其充要条件是(C)中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行,故和,且中任两个平行向量都线性无关.类似地,(D)中有两个平面平行,故,且中有两个平行向量共线.(5)【分析
3、】首先可以否定选项(A)与(C),因对于选项(B),若则对任何,因此也应否定(C),综上分析,用排除法应选(D).进一步分析可知,若令,而则的分布函数恰是三、【解】用洛必达法则.由题设条件知由于,故必有又由洛必达法则及,则有.综上,得四、【解】由已知条件得故所求切线方程为.由导数定义及数列极限与函数极限的关系可得五、【分析与求解】是正方形区域如图.因在上被积函数分块表示于是要用分块积分法,用将分成两块:(关于对称)(选择积分顺序)六、【分析与求解】(1)易知原函数,在上原函数,即.积分在与路径无关.(2)因找到了原函数,立即可得七、【证明】与书上解答略有不同,参见数三2002第七题(1)因为幂
4、级数的收敛域是,因而可在上逐项求导数,得,所以.(2)与相应的齐次微分方程为,其特征方程为,特征根为.因此齐次微分方程的通解为.设非齐次微分方程的特解为,将代入方程可得,即有.于是,方程通解为.当时,有于是幂级数的和函数为八、【分析与求解】(1)由梯度向量的重要性质:函数在点处沿该点的梯度方向方向导数取最大值即的模,(2)按题意,即求求在条件下的最大值点在条件下的最大值点.这是求解条件最值问题,用拉格朗日乘子法.令拉格朗日函数则有解此方程组:将式与式相加得或若,则由式得即若由或均得,代入式得即于是得可能的条件极值点现比较在这些点的函数值:因为实际问题存在最大值,而最大值又只可能在中取到.因此在
5、取到在的边界上的最大值,即可作为攀登的起点.九、【解】由线性无关及知,向量组的秩,即矩阵的秩为因此的基础解系中只包含一个向量.那么由知,的基础解系是再由知,是的一个特解.故的通解是其中为任意常数.十、【解】(1)若相似,那么存在可逆矩阵,使故(2)令那么但不相似.否则,存在可逆矩阵,使.从而,矛盾,亦可从而知与不相似.(3)由均为实对称矩阵知,均相似于对角阵,若的特征多项式相等,记特征多项式的根为则有相似于也相似于即存在可逆矩阵,使于是由为可逆矩阵知,与相似.十一、【解】由于依题意,服从二项分布,则有十二、【解】的矩估计量为根据给定的样本观察值计算因此的矩估计值对于给定的样本值似然函数为令,得
6、方程,解得(不合题意).于是的最大似然估计值为2003年硕士研究生入学考试(数学一)试题及答案解析一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) = .【分析】 型未定式,化为指数函数或利用公式=进行计算求极限均可.【详解1】 =,而 ,故 原式=【详解2】 因为 ,所以 原式=【评注】 本题属常规题型(2) 曲面与平面平行的切平面的方程是.【分析】 待求平面的法矢量为,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面切平面的法矢量与平行确定.【详解】 令 ,则, .设切点坐标为,则切平面的法矢量为 ,其与已知平面平行,因此有 ,可解得 ,相应地
7、有 故所求的切平面方程为 ,即 .【评注】 本题属基本题型。(3) 设,则= 1 .【分析】 将展开为余弦级数,其系数计算公式为.【详解】 根据余弦级数的定义,有 = = =1.【评注】 本题属基本题型,主要考查傅里叶级数的展开公式,本质上转化为定积分的计算. (4)从的基到基的过渡矩阵为 .【分析】 n维向量空间中,从基到基的过渡矩阵P满足=P,因此过渡矩阵P为:P=.【详解】根据定义,从的基到基的过渡矩阵为P=. =【评注】 本题属基本题型。(5)设二维随机变量(X,Y)的概率密度为 则 .【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率,一般可转化为二重积
8、分=进行计算.【详解】 由题设,有 = y 1 D O 1 x【评注】 本题属基本题型,但在计算二重积分时,应注意找出概率密度不为零与满足不等式的公共部分D,再在其上积分即可.(6)已知一批零件的长度X (单位:cm)服从正态分布,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则的置信度为0.95的置信区间是 .(注:标准正态分布函数值【分析】 已知方差,对正态总体的数学期望进行估计,可根据,由确定临界值,进而确定相应的置信区间.【详解】 由题设,可见 于是查标准正态分布表知本题n=16, , 因此,根据 ,有,即 ,故的置信度为0.95的置信区间是 .【评注】 本题属基本题型.
9、二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点. (D) 三个极小值点和一个极大值点. C y O x 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点.
10、 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导的图象,本题是其逆问题. (2)设均为非负数列,且,则必有(A) 对任意n成立. (B) 对任意n成立.(C) 极限不存在. (D) 极限不存在. D 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限是型未定式,可能存在也可能不存在,举反例说明
11、即可;极限属型,必为无穷大量,即不存在.【详解】 用举反例法,取,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则(A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点. (D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. A 【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻
12、域内f(x,y)是恒大于零、恒小于零还是变号. 【详解】 由知,分子的极限必为零,从而有f(0,0)=0, 且 充分小时),于是可见当y=x且充分小时,;而当y= -x且充分小时,. 故点(0,0)不是f(x,y)的极值点,应选(A).【评注】 本题综合考查了多元函数的极限、连续和多元函数的极值概念,题型比较新,有一定难度. 将极限表示式转化为极限值加无穷小量,是有关极限分析过程中常用的思想。(4)设向量组I:可由向量组II:线性表示,则 (A) 当时,向量组II必线性相关. (B) 当时,向量组II必线性相关. (C) 当时,向量组I必线性相关. (D) 当时,向量组I必线性相关. D 【分
13、析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I:可由向量组II:线性表示,则当时,向量组I必线性相关. 或其逆否命题:若向量组I:可由向量组II:线性表示,且向量组I线性无关,则必有. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如,则,但线性无关,排除(A);,则可由线性表示,但线性无关,排除(B);,可由线性表示,但线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。(5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B
14、均为矩阵,现有4个命题: 若Ax=0的解均是Bx=0的解,则秩(A)秩(B); 若秩(A)秩(B),则Ax=0的解均是Bx=0的解; 若Ax=0与Bx=0同解,则秩(A)=秩(B); 若秩(A)=秩(B), 则Ax=0与Bx=0同解.以上命题中正确的是(A) . (B) .(C) . (D) . B 【分析】 本题也可找反例用排除法进行分析,但 两个命题的反例比较复杂一些,关键是抓住 与 ,迅速排除不正确的选项.【详解】 若Ax=0与Bx=0同解,则n-秩(A)=n - 秩(B), 即秩(A)=秩(B),命题成立,可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出Ax=0与Bx
15、=0同解,如,则秩(A)=秩(B)=1,但Ax=0与Bx=0不同解,可见命题不成立,排除(D),故正确选项为(B).【例】 齐次线性方程组Ax=0与Bx=0同解的充要条件(A) r(A)=r(B). (B) A,B为相似矩阵.(C) A, B的行向量组等价. (D) A,B的列向量组等价. C 有此例题为基础,相信考生能迅速找到答案.(6)设随机变量,则 (A) . (B) . (C) . (D) . C 【分析】 先由分布的定义知,其中,再将其代入,然后利用F分布的定义即可.【详解】 由题设知,其中,于是=,这里,根据F分布的定义知故应选(C).【评注】 本题综合考查了t分布、分布和F分布的
16、概念,要求熟练掌握此三类常用统计量分布的定义.三 、(本题满分10分)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D.(1) 求D的面积A;(2) 求D绕直线x=e旋转一周所得旋转体的体积V.【分析】 先求出切点坐标及切线方程,再用定积分求面积A; 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.【详解】 (1) 设切点的横坐标为,则曲线y=lnx在点处的切线方程是 由该切线过原点知 ,从而 所以该切线的方程为 平面图形D的面积 (2) 切线与x轴及直线x=e所围成的三角形绕直线x=e旋转所得的圆锥体积为 曲线y=lnx与x轴
17、及直线x=e所围成的图形绕直线x=e旋转所得的旋转体体积为 ,因此所求旋转体的体积为 y 1 D O 1 e x【评注】 本题不是求绕坐标轴旋转的体积,因此不能直接套用现有公式. 也可考虑用微元法分析.四 、(本题满分12分)将函数展开成x的幂级数,并求级数的和.【分析】 幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形。本题可先求导,再利用函数的幂级数展开即可,然后取x为某特殊值,得所求级数的和.【详解】 因为又f(0)=, 所以 =因为级数收敛,函数f(x)在处连续,所以 令,得 ,再由,得 五 、(本题满分10分)已知平
18、面区域,L为D的正向边界. 试证:(1) ;(2) 【分析】 本题边界曲线为折线段,可将曲线积分直接化为定积分证明,或曲线为封闭正向曲线,自然可想到用格林公式;(2)的证明应注意用(1)的结果.【详解】 方法一:(1) 左边= =, 右边= =,所以 .(2) 由于,故由(1)得 方法二:(1) 根据格林公式,得,.因为D 具有轮换对称性,所以 =,故 . (2) 由(1)知 = = (利用轮换对称性) =【评注】 本题方法一与方法二中的定积分与二重积分是很难直接计算出来的,因此期望通过计算出结果去证明恒等式与不等式是困难的. 另外,一个题由两部分构成时,求证第二部分时应首先想到利用第一部分的
19、结果,事实上,第一部分往往是起桥梁作用的.六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0).汽锤第一次击打将桩打进地下a m. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0<r<1). 问(1) 汽锤击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深?(注:m表示长度单位米.)【分析】 本题属变力做功问题,可用定积分进行计算,而击打次数不限,相当于求数列的极限.【详解】
20、(1) 设第n次击打后,桩被打进地下,第n次击打时,汽锤所作的功为. 由题设,当桩被打进地下的深度为x时,土层对桩的阻力的大小为,所以 , 由可得 即 由可得 ,从而 ,即汽锤击打3次后,可将桩打进地下.(2) 由归纳法,设,则 =由于,故得 ,从而 于是 ,即若击打次数不限,汽锤至多能将桩打进地下 m.【评注】 本题巧妙地将变力作功与数列极限两个知识点综合起来了,有一定难度。但用定积分求变力做功并不是什么新问题,何况本题的变力十分简单。七 、(本题满分12分)设函数y=y(x)在内具有二阶导数,且是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程
21、;(2) 求变换后的微分方程满足初始条件的解.【分析】 将转化为比较简单,=,关键是应注意:= =.然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知 ,于是有=.代入原微分方程得 ( * )(2) 方程( * )所对应的齐次方程的通解为 设方程( * )的特解为 ,代入方程( * ),求得,故,从而的通解是 由,得. 故所求初值问题的解为 【评注】 本题的核心是第一步方程变换。八 、(本题满分12分)设函数f(x)连续且恒大于零, ,其中,(1) 讨论F(t)在区间内的单调性.(2) 证明当t>0时,【分析】 (1) 先分别在球面坐标下计算分子的三重积分和在极坐标下计算分
22、母的重积分,再根据导函数的符号确定单调性;(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可.【详解】 (1) 因为 , ,所以在上,故F(t) 在内单调增加.(2) 因 ,要证明t>0时,只需证明t>0时,即 令 ,则 ,故g(t)在内单调增加.因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0).又g(0)=0, 故当t>0时,g(t)>0,因此,当t>0时,【评注】 本题将定积分、二重积分和三重积分等多个知识点结合起来了,但难点是证明(2)中的不等式,事实上,这里也可用柯西积分不等式证明: ,在上式中取f(
23、x)为,g(x)为即可.九 、(本题满分10分)设矩阵,求B+2E的特征值与特征向量,其中为A的伴随矩阵,E为3阶单位矩阵.【分析】 可先求出,进而确定及B+2E,再按通常方法确定其特征值和特征向量;或先求出A的特征值与特征向量,再相应地确定A*的特征值与特征向量,最终根据B+2E与A*+2E相似求出其特征值与特征向量.【详解】 方法一:经计算可得 , , =.从而 ,故B+2E的特征值为当时,解,得线性无关的特征向量为 所以属于特征值的所有特征向量为 ,其中是不全为零的任意常数.当时,解,得线性无关的特征向量为 ,所以属于特征值的所有特征向量为,其中为任意常数.方法二:设A的特征值为,对应特
24、征向量为,即 . 由于,所以 又因 ,故有 于是有 , 因此,为B+2E的特征值,对应的特征向量为由于 ,故A的特征值为当时,对应的线性无关特征向量可取为, 当时,对应的一个特征向量为 由 ,得,.因此,B+2E的三个特征值分别为9,9,3.对应于特征值9的全部特征向量为 ,其中是不全为零的任意常数;对应于特征值3的全部特征向量为 ,其中是不为零的任意常数.【评注】 设,若是A的特征值,对应特征向量为,则B与A有相同的特征值,但对应特征向量不同,B对应特征值的特征向量为本题计算量大,但方法思路都是常规和熟悉的,主要是考查考生的计算能力。不过利用相似矩阵有相同的特征值以及A与A*的特征值之间的关
25、系讨论,可适当降低计算量.十 、(本题满分8分)已知平面上三条不同直线的方程分别为 , , .试证这三条直线交于一点的充分必要条件为【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线交于一点,则线性方程组 (*)有唯一解,故系数矩阵与增广矩阵的秩均为2,于是由于 =,但根据题设 ,故 充分性:由,则从必要性的证明可知,故秩由于 =,故秩(A)=2. 于是, 秩(A)=秩=2. 因此方程组(*)有唯一解,即三直线交于一点.方法二:必要性设三直线交于一点,则为Ax=0的非零解,其中 于是 . 而 =,但根据题设 ,
26、故 充分性:考虑线性方程组 (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组 (* *)因为 =-,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数的数学期望;(2) 从乙箱中任取一件产品是次品的概率.【分析】 乙箱中可能的
27、次品件数为0,1,2,3,分别求出其概率,再按定义求数学期望即可;而求从乙箱中任取一件产品是次品的概率,涉及到两次试验,是典型的用全概率公式的情形,第一次试验的各种可能结果(取到的次品数)就是要找的完备事件组.【详解】 (1) X的可能取值为0,1,2,3,X的概率分布为 , k=0,1,2,3.即 X 0 1 2 3 P 因此 (2) 设A表示事件“从乙箱中任取一件产品是次品”,由于,构成完备事件组,因此根据全概率公式,有 = =【评注】本题对数学期望的计算也可用分解法: 设 则的概率分布为 0 1 P 因为,所以 十二 、(本题满分8分)设总体X的概率密度为 其中是未知参数. 从总体X中抽
28、取简单随机样本,记(1) 求总体X的分布函数F(x);(2) 求统计量的分布函数;(3) 如果用作为的估计量,讨论它是否具有无偏性.【分析】 求分布函数F(x)是基本题型;求统计量的分布函数,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验是否成立.【详解】 (1) (2) = = = =(3) 概率密度为 因为 =,所以作为的估计量不具有无偏性.【评注】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率密度以及数学期望的计算等多个知识点. 将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.2004年
29、数学一试题 详解和评注二、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx上与直线垂直的切线方程为 .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx的导数为1可确定切点的坐标。【详解】 由,得x=1, 可见切点为,于是所求的切线方程为 , 即 .【评注】 本题也可先设切点为,曲线y=lnx过此切点的导数为,得,由此可知所求切线方程为, 即 .(2)已知,且f(1)=0, 则f(x)= .【分析】 先求出的表达式,再积分即可。【详解】 令,则,于是有 , 即 积分得 . 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=
30、 .【评注】 本题属基础题型,已知导函数求原函数一般用不定积分。(3)设为正向圆周在第一象限中的部分,则曲线积分的值为 .【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分。【详解】 正向圆周在第一象限中的部分,可表示为 于是 =【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程的通解为 .【分析】 欧拉方程的求解有固定方法,作变量代换化为常系数线性齐次微分方程即可。【详解】 令,则 , ,代入原方程,整理得,解此方程,得通解为 【评注】 本题属基础题型,也可直接套用公式,令,则欧拉方程 ,可化为 (5
31、)设矩阵,矩阵B满足,其中为A的伴随矩阵,E是单位矩阵,则 .【分析】 可先用公式进行化简【详解】 已知等式两边同时右乘A,得, 而,于是有, 即 ,再两边取行列式,有 , 而 ,故所求行列式为【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵,一般均应先利用公式进行化简。 (6)设随机变量X服从参数为的指数分布,则= .【分析】 已知连续型随机变量X的分布,求其满足一定条件的概率,转化为定积分计算即可。【详解】 由题设,知,于是 = =【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算。二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的
32、四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把时的无穷小量,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) . (B) . (C) . (D) . B 【分析】 先两两进行比较,再排出次序即可.【详解】 ,可排除(C),(D)选项,又 =,可见是比低阶的无穷小量,故应选(B).【评注】 本题是无穷小量的比较问题,也可先将分别与进行比较,再确定相互的高低次序.(8)设函数f(x)连续,且则存在,使得 (A) f(x)在(0,内单调增加. (B)f(x)在内单调减少.(C) 对任意的有f(x)>f(0) . (D) 对任意的有f(x)>f(0)
33、 . C 【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可。【详解】 由导数的定义,知 ,根据保号性,知存在,当时,有 即当时,f(x)<f(0); 而当时,有f(x)>f(0). 故应选(C).【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论。(9)设为正项级数,下列结论中正确的是 (A) 若=0,则级数收敛.(B) 若存在非零常数,使得,则级数发散.(C) 若级数收敛,则. (D) 若级数发散, 则存在非零常数,使得. B 【分析】 对于敛散性的判定问题,若不便直接推证,往往
34、可用反例通过排除法找到正确选项.【详解】 取,则=0,但发散,排除(A),(D);又取,则级数收敛,但,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式, ,而级数发散,因此级数也发散,故应选(B).(10)设f(x)为连续函数,则等于 (A) 2f(2). (B) f(2). (C) f(2). (D) 0. B 【分析】 先求导,再代入t=2求即可。关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得 =于是,从而有 ,故应选(B).【评注】 在应用变限的积分对变量x求导时,应注意被积函数中不能含有变量x: 否则,应先通过恒等变形、变量代
35、换和交换积分次序等将被积函数中的变量x换到积分号外或积分线上。(11)设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C, 则满足AQ=C的可逆矩阵Q为(A) . (B) . (C) . (D) . D 【分析】 本题考查初等矩阵的的概念与性质,对A作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q即为此两个初等矩阵的乘积。【详解】由题设,有 , ,于是, 可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系。(12)设A,B为满足AB=O的任意两个非零矩阵,则必有(A) A的列向量组线性相关,B的行向量组线性相关
36、. (B) A的列向量组线性相关,B的列向量组线性相关. (C) A的行向量组线性相关,B的行向量组线性相关. (D) A的行向量组线性相关,B的列向量组线性相关. A 【分析】A,B的行列向量组是否线性相关,可从A,B是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A为矩阵,B 为矩阵,则由AB=O知, . 又A,B为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A的列向量组线性相关,B的行向量组线性相关,故应选(A).【详解2】 由AB=O知,B的每一列均为Ax=0的解,而B为非零矩阵,即Ax=0存
37、在非零解,可见A的列向量组线性相关。同理,由AB=O知,于是有的列向量组,从而B的行向量组线性相关,故应选(A).【评注】 AB=O是常考关系式,一般来说,与此相关的两个结论是应记住的:1) AB=O;2) AB=OB的每列均为Ax=0的解。(13)设随机变量X服从正态分布N(0,1),对给定的,数满足,若,则等于(A) . (B) . (C) . (D) . C 【分析】 此类问题的求解,可通过的定义进行分析,也可通过画出草图,直观地得到结论。【详解】 由标准正态分布概率密度函数的对称性知,于是即有 ,可见根据定义有,故应选(C).【评注】 本题相当于分位数,直观地有 o 此类问题在文登学校
38、的辅导班上作为正态分布的一般结论总结过.(14)设随机变量独立同分布,且其方差为 令,则(A) Cov( (B) . (C) . (D) . A 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:【详解】 Cov( =【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如 =, =(15)(本题满分12分)设, 证明.【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.【证法1】 对函数在a,b上应用拉格朗日中值定理,得 设,则, 当t>e时, 所以单调减少,从而,即 ,故 .【证法2】 设,则 , ,所以当x>e时
39、, 故单调减少,从而当时, ,即当时,单调增加.因此当时,即 ,故 .【评注】 本题也可设辅助函数为或,再用单调性进行证明即可。 (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 问从着陆点算起,飞机滑行的最长距离是多少?注kg表示千克,km/h表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可。【详解1】 由题设,飞机的质量m=9000k
40、g,着陆时的水平速度. 从飞机接触跑道开始记时,设t时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得 .又 ,由以上两式得 ,积分得 由于,故得,从而 当时, 所以,飞机滑行的最长距离为1.05km.【详解2】 根据牛顿第二定律,得 ,所以 两端积分得通解,代入初始条件解得,故 飞机滑行的最长距离为 或由,知,故最长距离为当时,【详解3】 根据牛顿第二定律,得 , ,其特征方程为 ,解之得,故 由 ,得 于是 当时,所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为或的极限值,这种条件应引起注意.(17)(本题满分12分)计算曲面积分 其中是
41、曲面的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取为xoy平面上被圆所围部分的下侧,记为由与围成的空间闭区域,则 由高斯公式知 = =而 ,故 【评注】 本题选择时应注意其侧与围成封闭曲面后同为外侧(或内侧),再就是在上直接投影积分时,应注意符号(取下侧,与z轴正向相反,所以取负号).(18)(本题满分11分)设有方程,其中n为正整数. 证明此方程存在惟一正实根,并证明当时,级数收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性。而正项级数的敛散性可用比较法判定。【证】 记 由,及连续函数的介值定理知,
42、方程存在正实数根当x>0时,可见在上单调增加, 故方程存在惟一正实数根由与知 ,故当时,.而正项级数收敛,所以当时,级数收敛. 【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证。(19)(本题满分12分)设z=z(x,y)是由确定的函数,求的极值点和极值.【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 ,所以 , .令 得 故 将上式代入,可得 或 由于 , ,所以 ,故,又,从而点(9,3)是z(x,y)的
43、极小值点,极小值为z(9,3)=3.类似地,由 ,可知,又,从而点(-9, -3)是z(x,y)的极大值点,极大值为z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z满足原方程。(20)(本题满分9分)设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a的可能取值进行讨论即可。【详解1】 对方程组的系数矩
44、阵A作初等行变换,有 当a=0时, r(A)=1<n,故方程组有非零解,其同解方程组为 由此得基础解系为 于是方程组的通解为 其中为任意常数.当时,对矩阵B作初等行变换,有 可知时,故方程组也有非零解,其同解方程组为 由此得基础解系为 ,于是方程组的通解为 ,其中k为任意常数.【详解2】 方程组的系数行列式为 .当,即a=0或时,方程组有非零解.当a=0时,对系数矩阵A作初等行变换,有 ,故方程组的同解方程组为 由此得基础解系为 于是方程组的通解为 其中为任意常数.当时,对系数矩阵A作初等行变换,有 ,故方程组的同解方程组为 由此得基础解系为 ,于是方程组的通解为 ,其中k为任意常数.【评注】 矩阵A的行列式也可这样计算:=+,矩阵的特征值为,从而A的特征值为a,a, 故行列式(21)(本题满分9分) 设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.【分析】 先求出A的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A是否可相似对角化即可.【详解】 A的特征多项式为 =当是特征方程的二重根,则有 解得a= -2.当a= -2时,A的特征值为2,2,6, 矩阵2E-A=的秩为1,故对应的线性无关的特征向量有两个,从而A可相似对角化。若不是特征方程的二重根,则为完全平方,从而18+3a=16,解得 当时,A的特征值为2,4,4,矩阵4E-A=秩为2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论