岩土工程数值模拟分析(共8页)_第1页
岩土工程数值模拟分析(共8页)_第2页
岩土工程数值模拟分析(共8页)_第3页
岩土工程数值模拟分析(共8页)_第4页
岩土工程数值模拟分析(共8页)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上哈尔滨工业大学研究生课程作业课程名称 岩土工程数值模拟分析 导师姓名 胡老师 研究生姓名 XX 所在院系 土木工程学院(岩土与地震工程研究中心)类 别 学术型硕士 日 期 2013 年 6月 09日 评 语老师评语:平时成绩:课程作业成绩:总 成 绩:评阅人签名:注:1、无评阅人签名成绩无效;2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效;3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。GABP网络在岩土体力学参数的位移反分析研究中的应用摘要:本文以长春地铁1号线解放大路站基坑开挖为工程背景,综合运用了正交试验法、有限差分法以及BP神经网络方法进行了基坑岩土体力

2、学参数的位移反分析研究。根据正交试验对各土层土体力学参数进行分组设计,运用有限差分软件FLAC3D对基坑开挖工况进行模拟计算,根据FLAC3D计算结果构建BP神经网络训练样本,通过GA-BP(遗传BP神经网络)算法进行位移反分析研究,并利用由该网络得到的岩土体参数对基坑位移作正向分析,结论表明了该方法在土性参数反演中的适用性,可以作为地铁深基坑开挖设计施工的参考和借鉴。关键词:FLAC3D,遗传算法,BP神经网络,正交试验设计,岩土体参数反演专心-专注-专业引言岩土体的力学性态及原始应力状态等参数是数值方法能否成功应用的关键,试图从改进实验技术和采用新的实验手段解决有关岩土工程设计参数是很困难

3、的12,利用现场量测信息为数值分析提供实用的“计算参数”的所谓“反分析”就由此而产生。从系统角度来看,基坑工程是一个复杂的巨系统,人们对其进行的各种施工活动,均可看成系统输入,而人们量测到的位移、变形破坏则为系统对输入的响应,即系统的输出。而反分析则是根据一个灰色系统的输出确定输入的过程12。参数反分析可归为三类:反演法,即直接按量测位移求解逆方程得到参数;正演法,即首先给定参数的试探值,通过迭代运算和误差函数的优化技术求得参数的“最佳值”; 考虑先验信息及量测误差的贝叶斯(Beyes)方法或卡尔曼(Caiman)滤波法34。由于岩土体介质的非线性,难以建立待反演参数与量测信息之间的显式关系,

4、目前主要采用正演优化反分析方法实现上述参数识别过程,即第二种方案土的工程性质受应力历史、应力路径及自身结构影响,呈现出非线性性质,因此在基坑工程反分析中采用非线性土的本构模型日益受人们采纳56。人工神经网络是一种建立输入和输出的映射关系,具有高度的学习能力、容错能力,三层以上(含三层)的神经网络可以逼近任意非线性函数34,可用来描述土的力学参数和位移之间的非线性关系。工程概况本工程为长春地铁1号线一期工程解放大路站工程,工程包括内部竖井、风道施工。竖井井口位于人民大街和解放大路十字路口东北角绿地上。竖井采用矩形截面形式,支护外缘尺寸为15.55m×7.20m,竖井深约29.89m,采

5、用倒挂井壁法施工,钢筋格栅+型钢支撑+喷射混凝土支护形式。竖井锁口圈梁为C30钢筋混凝土。井身采用注浆锚管+钢筋格栅型钢支撑喷射混凝土联合支护形式,喷射混凝土为C20湿喷早强混凝土,厚度为350mm。施工开挖模拟和反分析参数选择根据基坑开挖和支护的施工步序,计算共考虑4个工况:开挖至第一道支撑底标高并并设置第一道支撑为工况1,开挖至第二道支撑底标高并设置第二道支撑为工况2,开挖至第三道支撑底标高并设置第三道支撑为工况3,开挖至第四道支撑底标高并设置第四道支撑为工况4,计算中将每一个工况作为一个计算步时,按增量法近似模拟施工过程反分析结果的准确性很大程度上依赖于现场实测数据的可靠性与代表性57。

6、反分析所得的岩土体参数一般来说是代表某一基坑土层变形与强度特征的“综合参数”,即要求实测数据也能充分体现这一点,所以从以下三个方面选取反分析实测数据:实测数据初分析,剔除因局部软弱带、监测失真等因素导致的不合理位移;考虑数据点的时间分布特征,选取不同开挖层的典型位移;考虑数据点的空间分布,选取围护结构顶部的水平位移和沉降位移及周边建筑物的沉降位移。综合以上分析,我们选择四种参数:E,C,。基于FLAC3D的计算模型FLAC3D一种基于三维显示有限差分法的数值分析软件,在计算求解中它采用了动态松弛法,能够较好地模拟岩土材料的塑性流动、软化、屈服,尤其适合做材料的弹塑性分析,大变形和模拟施工期的开

7、挖过程及支护模拟。因此本文采用FLAC3D做数值分析的手段8。模型计算域范围:基坑开挖深度为15m,当前开挖长64m,基坑宽18.5m。根据基坑开挖影响长度方向约为开挖深度的3-4倍,深度方向约为开挖深度的2-4倍,取基坑沿长边方向延伸约46m,基坑两侧短边各延伸约40m,基坑底部以下取45m,到达下部含碎石粉质粘土层,对计算结构不会有大的影响,即模型尺寸为110m×100m×60m(长×宽×高)。在FLAC3D模型中,地下连续墙和土体采用三维六面体8节点的实体单元模拟,钢支撑采用3节点的梁单元模拟,材料模型选用Mohr-Coulomb弹塑性本构关系和强

8、度判据。由于模型范围选取足够大,因此我们在基坑的长边方向(X方向)两端(X=0,X=90)施加X方向约束,基坑的短边方向(Y方向)两端(Y=0,Y=70)施加Y方向约束,而在模型的底面(Z=-55)施加了XYZ三个方向的约束。计算模型材料参数如表1,计算模型如图1。表1计算模型围岩及支护结构力学参数Table 1 Mechanical parameters for calculating model of surrounding rock and supporting structures土层名称杂填土 粘土 粉沙质粘土190018741810C12 21 22 18 12 110.330.3

9、30.3K/MPa7.93 6.548.28G/MPa4.0 2.39 3.30层厚2.64.722图1FLAC3D数值计算模型Fig.1 Numerical calculation model of FLAC3DGA-BP模型的建立1 目标函数的建立本文选取现场实测位移增量值与神经网络映射值的残差平方和作为目标函数,也是遗传算法的适应度函数,即:式中:为需要确定的参数向量,为参数约束条件,即待反演参数应满足本构关系理论规则和参数允许的取值范围;和分别为第测点某一施工步或某几个施工步前后位移增量的网络映射值和实测值,优化反分析的目标就是求得使取得最小值时的参数值。2基于GA-BP算法的位移反分

10、析采用神经网络建立岩土体力学参数和位移之间的映射关系,在数据进行更新的时候,需要进行复杂的数值计算,很大程度上降低了反分析的效率910。而将神经网络和遗传算法结合7,即利用了神经网络的高度非线性映射和预测的功能,又利用了遗传算法全局寻优特性,克服了神经网络学习陷入局部极小问题11。采用的遗传神经网络(GA-BP)反分析步骤如下;(1) 基于正交试验设计生成神经网络学习样本和测试样本的参数组合,通过FLAC3D正算程序获取样本的输出,并进行归一化处理。(2) 给定BP神经网络隐含层及每个隐含层神节点数的范围,随机抽取一个样本,利用GA搜索最佳ANN结构。利用搜索得到的网络进行样本学习,建立岩土体

11、力学参数与输出位移之间的映射关系1213。(3) 利用测试样本,对网络进行训练。对训练成熟的网络进行初始化设置,并确定待反演参数的取值范围。(4) 在待反演的参数取值范围内随机生成可能参数群体,逐个代入训练好的神经网络进行位移预测,计算目标函数值(适应度)。若适应度满足精度要求,则当前对应参数即为最优参数组合1415;若适应度不满足要求,则进行复制、杂交、变异操作,产生下一子代可能的参数群体16。(6) 重复进行(5)步操作,直到获得满足目标函数精度的最优参数组合。3 BP神经网络样本构造为了使选取的样本能够全面反映土体的力学影响因素,使试验样本具有充分的代表性11,采用正交试验设计BP神经网

12、络样本。利用SPSS软件来设计正交试验13,采用正交表L25(54)分别构造网络的学习样本和测试样本,参数输入部分如上表2,对于样本输出则采用FLAC3D正算获取监测点位移增量,如上表31213。其中,前20个样本作为网络的学习样本,后5个为测试样本。表2 BP网络输入样本Table 2 Sample input of BP network编号输入(FLAC计算位移mm)123416.345.229.987.3425.135.8410.778.6535.235.456.389.2145.146.358.2910.6355.746.358.726.6665.825.439.878.2474.31

13、4.799.659.4383.315.929.478.5897.368.668.557.76106.258.378.699.35116.266.987.967.64126.417.0210.308.31137.457.849.178.68146.817.926.268.51156.257.908.758.48167.267.167.266.44177.387.187.758.83187.557.018.396.75198.637.678.438.57207.716.899.567.37217.346.758.929.14227.325.898.768.35236.716.9711.499.77

14、246.536.619.759.64256.467.028.948.19表3 BP网络输出样本Table 3 Sample output of BP network试验编号样本参数E0/GPaC/KPa/。u16.2634.2180.3426.2637.1200.2836.2638.4220.3646.2639.9240.3956.2642.0260.3367.3634.2180.3977.3637.1200.3687.3638.4220.3397.3639.9180.34107.3642.0200.34118.7434.2220.28 128.7437.1260.34138.7438.420

15、0.33148.7439.9180.39158.7442.0240.36169.5434.2260.39179.8237.1180.36189.8238.4200.33199.8239.9240.28209.8242.0220.282110.3134.2260.282210.3137.1240.342310.3138.4260.362410.3139.9220.392510.3142.0240.33参数的反演计算在Matlab12a中编写进化神经网络算法,通过GA搜索ANN结构,获得最优网络结构为424164;采用学习率=0.20、动量因子=0.35、利用学习样本训练网络结构,选取测试样本的系

16、统误差极小值对应的网络连接权值,得到网络结构在本工程意义下泛化能力是最佳的131617。然后设置遗传代数Igen=100、种群规模Np=20、选择变异概率0.09,然后调用gaot工具箱,经GA搜索得到最优参数17,见表4。表4 反分析所得岩土体参数Table 4 Soil mass parameters from back analysis参 数E0(GPa)(MPa) (°)反 演 值1215.521030反演分析结果检验反演分析得到岩土体参数不是我们的最终目标,利用获取的参数进行后续开挖的预测(位移、应力、应变、松动圈深度等)和进行基坑施工期稳性评价、最后用于反馈设计与施工才是

17、我们最关注的事情。反演得到的岩土体参数是否可用还有待于验证,本文利用获取参数通过正算,获取围岩测点位移,借用灰色系统理论中的后验差法1617进行位移检验来判断反演所得参数的可信性。用后验差法来检验实测位移和计算位移间的偏差程度:首先,计算后验差比值和小误差概率,即: (2) (3)式中C为位移计算值方差与位移残差方差的比值。残差由计算。 然后根据、值按表6判断结果是否可靠,经检验达到“合格”及以上认为反演结果可用。表5 精度等级划分表Table 6 Accuracy grade classification PC好0.950.35合格0.850.50勉强合格0.700.65不合格0.

18、700.65对基坑粉质粘土层开挖引起的增量位移进行预测。将得到的预测值与现场实测值比较,两者数值较接近,计算的后验差比值和小误差概率表明了反演得到的岩土体参数能够较好代表解放大路站基坑粉质粘土层的整体情况,见表6。结果说明了采用GABP算法得到的预测值是可信的,可以作为工程参考值。表6粉质粘土层开挖位移增量计算值与实测值对比Table.7 Displacement comparison between computed and measured of excavation监测点JF22JF23JF27实测位移-18.87-29.7418.34计算位移-17.599-28.20618.852绝对

19、误差1.2711.5340.512相对误差(%)-6.32-5.152.79结论与建议建立了模拟基坑实际开挖的平面应变有限差分计算模型,进行了岩土体参数的增量位移智能反演,得出以下结论:(1) 建立基坑分层开挖FLAC3D计算模型来模拟实际施工情况,基于正交试验方法获得神经网络学习和测试样本,通过遗传算法优化BP神经网络结构,形成遗传神经网络(GA-BP)算法,可以迅速地建立位移与岩土体参数之间的高度非线性映射关系,避免了参数调整时需要的复杂计算。(2) 合理选取反演参数和现场实测位移增量数据,运用遗传算法全局寻优特点,借助训练好的围岩参数-位移之间非线性映射关系网络,成功反演出与弹塑性模型相

20、关4个岩土体参数。(3) 运用反演参数,通过正算对基坑粉质粘土层开挖引起位移增量进行了预测,并进行了位移的后验差法检验,结果表明反演参数的适用性,可作为后续开挖施工设计依据617。1杨林德,朱合华等.岩土工程问题的反演理论与工程实践M.北京:科学出版社,1998. 2杨志法.岩土工程反分析原理及应用.地震出版社,20023吕爱钟,蒋斌松等.岩石力学反问题M.北京:煤炭工业出版社,1998.4黄运飞,冯静.计算工程地质学M.兵器工业出版社,1992.5朱维申等考虑时空效应的地下洞室变形观测及反分析J岩石力学与工程学报,1989,8(4)346-353.6邓聚龙.灰色控制系统J.华中科技大学学报(自然科学版),1982(3):1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论