轴对称最值问题专项提升附答案_第1页
轴对称最值问题专项提升附答案_第2页
轴对称最值问题专项提升附答案_第3页
轴对称最值问题专项提升附答案_第4页
轴对称最值问题专项提升附答案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 使 命:给 孩 子 受 益 一 生 的 教 育 !授课教案 学员姓名:_ 学员年级:_ 授课教师:_ 所授科目:_ 上课时间:_年_月_日 ( ); 共_课时 (以上信息请老师用正楷字手写) 轴对称最值问题专项提升【知识点】最短路径两点之间,线段最短例:四边形ABCD中,BAD=,B=D=,在BC,CD上分别找一点M,N,使AMN周长最小,则AMN+ANM的度数是( )A. B. C. D.例:如图,P,Q分别为ABC的边AB,AC上的定点,在BC上求作一点M,使PQM周长最小。一解答题(共6小题)1已知:如图所示,M(3,2),N(1,1)点P在y轴上使PM+PN最短,求P点坐标2如图,A

2、BC的边AB、AC上分别有定点M、N,请在BC边上找一点P,使得PMN的周长最短 保留作图痕迹)3如图ABC是边长为2的等边三角形,D是AB边的中点,P是BC边上的动点,Q是AC边上的动点,当P、Q的位置在何处时,才能使DPQ的周长最小?并求出这个最值4如图,AOB=30°,AOB内有一定点P,且OP=10,OA上有一点Q,OB上有一定点R若PQR周长最小,求它的最小值5如图,已知A、B是锐角的OM边上的两个定点,P在ON边上运动问P点在什么位置时,PA2+PB2的值最小?6如图,两个生物制药厂A与B座落于运河河岸的同一侧工厂A和B距离河岸l分别为4千米和2千米,两个工厂的距离为6千

3、米现要在运河的工厂一侧造一点C,在C处拟设立一个货物运输中转站,并建设直线输送带分别到两个工厂和河岸,使直线运送带总长最小如图建立直角坐标系(1)如果要求货物运动中转站C距离河岸l为a千米(a为一个给定的数,0a2),求C点设在何处时,直线输送带总长S最小,并给出S关于a的表达式(2)在0a2范围内,a取何值时直线输送带总长最小,并求其最小值2014年09月09日752444625的初中数学组卷参考答案与试题解析一解答题(共6小题)1已知:如图所示,M(3,2),N(1,1)点P在y轴上使PM+PN最短,求P点坐标考点:轴对称-最短路线问题;坐标与图形性质菁优网版权所有专题:数形结合分析:找出

4、点N关于y轴的对称点,连接M与对称点,与y轴的交点为P点,根据两点之间,线段最短得到此时点P在y轴上,且能使PM+PN最短根据关于y轴对称点的特点,找出N对称点的坐标,设出直线MP的方程,把N的对称点的坐标和M的坐标代入即可确定出直线MP的方程,然后令x=0求出直线与y轴的交点,写出交点坐标即为点P的坐标解答:解:根据题意画出图形,找出点N关于y轴的对称点N,连接MN,与y轴交点为所求的点P,N(1,1),N(1,1),设直线MN的解析式为y=kx+b,把M(3,2),N(1,1)代入得:,解得,所以y=x,令x=0,求得y=,则点P坐标为(0,)点评:此题考查了对称的性质,以及利用待定系数法

5、求一次函数的解析式利用对称的方法找出线段之和的最小值的步骤为:1、找出其中一个定点关于已知直线的对应点;2、连接对应点与另一个定点,求出与已知直线交点的坐标;3、根据两点之间,线段最短可知求出的交点坐标即为满足题意的点的坐标2如图,ABC的边AB、AC上分别有定点M、N,请在BC边上找一点P,使得PMN的周长最短 (写出作法,保留作图痕迹)考点:轴对称-最短路线问题菁优网版权所有专题:作图题分析:作点N关于BC的对称点N,连接MN交BC于点P,由两点之间线段最短可知P点即为所求点解答:解:作点N关于BC的对称点N,连接MN交BC于点P,由对称的性质可知PN=PN,故PN+PM=MN,由两点之间

6、线段最短可知,PMN的最短周长即为MN+MN点评:本题考查的是最短线路问题,根据两点之间线段最短的知识作出N的对称点是解答此题的关键3如图ABC是边长为2的等边三角形,D是AB边的中点,P是BC边上的动点,Q是AC边上的动点,当P、Q的位置在何处时,才能使DPQ的周长最小?并求出这个最值考点:轴对称-最短路线问题;等边三角形的性质菁优网版权所有专题:几何图形问题分析:作出D关于BC、AC的对称点D'、D'',连接D'D'',DQ,DP,根据轴对称的性质将三角形的周长最值问题转化为两点之间线段最短的问题,利用等边三角形的性质和三角函数即可解答解答:

7、解:作D关于BC、AC的对称点D'、D'',连接D'D'',DQ,DPDQ=D''Q,DP=D'P,DPQ的周长为PQ+DQ+DP=PQ+D''Q+D'P=D'D'',根据两点之间线段最短,D'D''的长即为三角形周长的最小值A=B=60°,BED=AFD=90°,=90°60°=30°,D'DD''=180°30°30°=120°,D为A

8、B的中点,DF=ADcos30°=1×=,AF=,易得ADFQD''F,QF=AF=,AQ=1,BP=1,Q、P为AC、BC的中点DD''=×2=,同理,DD'=×2=,DD'D''为直角三角形,D'=D''=30°,D''D'=2DD'cos30°=2××=3点评:此题考查了轴对称最短路径问题,涉及正三角形的性质、三角函数、三角形的内角和定理、等腰三角形的性质和判定等知识,有一定难度4如图,AO

9、B=30°,AOB内有一定点P,且OP=10,OA上有一点Q,OB上有一定点R若PQR周长最小,求它的最小值考点:轴对称-最短路线问题菁优网版权所有专题:计算题分析:先画出图形,作PMOA与OA相交于M,并将PM延长一倍到E,即ME=PM作PNOB与OB相交于N,并将PN延长一倍到F,即NF=PN连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则PQR即为周长最短的三角形再根据线段垂直平分线的性质得出PQR=EF,再根据三角形各角之间的关系判断出EOF的形状即可求解解答:解:设POA=,则POB=30°,作PMOA与OA相交于M,并将PM延长一倍到E,即ME=PM

10、作PNOB与OB相交于N,并将PN延长一倍到F,即NF=PN连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则PQR即为周长最短的三角形OA是PE的垂直平分线,EQ=QP;同理,OB是PF的垂直平分线,FR=RP,PQR的周长=EFOE=OF=OP=10,且EOF=EOP+POF=2+2(30°)=60°,EOF是正三角形,EF=10,即在保持OP=10的条件下PQR的最小周长为10故答案为:10点评:本题考查的是最短距离问题,解答此类题目的关键根据轴对称的性质作出各点的对称点,即把求三角形周长的问题转化为求线段的长解答5如图,已知A、B是锐角的OM边上的两个定点

11、,P在ON边上运动问P点在什么位置时,PA2+PB2的值最小?考点:轴对称-最短路线问题菁优网版权所有专题:动点型;探究型;存在型分析:由余弦定理,可得二次函数,然后可求最值解答:解:设OA=a,OB=b,OP=x,PA2=a2+x22axcos,PB2=b2+x22bxcos,PA2+PB2=a2+x22axcos+b2+x22bxcos=2x22(a+b)cosx+a2+b2,当x=cos时,PA2+PB2的值最小点评:本题考查的是最短路线问题,熟知两点之间线段最短的知识是解答此题的关键6如图,两个生物制药厂A与B座落于运河河岸的同一侧工厂A和B距离河岸l分别为4千米和2千米,两个工厂的距

12、离为6千米现要在运河的工厂一侧造一点C,在C处拟设立一个货物运输中转站,并建设直线输送带分别到两个工厂和河岸,使直线运送带总长最小如图建立直角坐标系(1)如果要求货物运动中转站C距离河岸l为a千米(a为一个给定的数,0a2),求C点设在何处时,直线输送带总长S最小,并给出S关于a的表达式(2)在0a2范围内,a取何值时直线输送带总长最小,并求其最小值考点:轴对称-最短路线问题;直角梯形菁优网版权所有专题:探究型分析:(1)过B作直线BEy轴于E点,再根据所建直角坐标系及A和B距离河岸l分别为4千米和2千米求出A、B两点的坐标,再用a表示出B点的坐标,再用两点间的距离公式即可求解;(2)根据(1)中S的表达式及a的取值范围进行解答即可解答:解:(1)如图所示:过B作直线BEy轴于E点,A和B距离河岸l分别为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论