版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一部分 集合1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?2 .数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决3.(1) 元素与集合的关系:,.(2)德摩根公式: .(3)注意:讨论的时候不要遗忘了的情况.(4)集合的子集个数共有 个;真子集有1个;非空子集有1个;非空真子集有2个.4是任何集合的子集,是任何非空集合的真子集.第二部分 函数1映射:注意: 第一个集合中的元素必须有象;一对一或多对一.2函数值域的求法:分析法
2、 ;配方法 ;判别式法 ;利用函数单调性 ;换元法 ;利用均值不等式 ; 利用数形结合或几何意义(斜率、距离、绝对值的意义等);利用函数有界性(、等);平方法;导数法3复合函数的有关问题:(1)复合函数定义域求法: 若f(x)的定义域为a,b,则复合函数fg(x)的定义域由不等式ag(x)b解出 若fg(x)的定义域为a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域.(2)复合函数单调性的判定:首先将原函数分解为基本函数:内函数与外函数分别研究内、外函数在各自定义域内的单调性根据“同性则增,异性则减”来判断原函数在其定义域内的单调性.4分段函数:值域(最值)、单调性、图象等问题
3、,先分段解决,再下结论。5函数的奇偶性:函数的定义域关于原点对称是函数具有奇偶性的前提条件是奇函数;是偶函数.奇函数在0处有定义,则在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性6函数的单调性:单调性的定义:在区间上是增函数当时有;在区间上是减函数当时有;单调性的判定:定义法:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;复合函数法图像法注:证明单调性主要用定义法。7函数的周期性:(1)周期性的定义:对定义域内的任意,若有 (其中为非零常数),则称函数为周期函数,为它的一个周期。所有正周期中最小的称为函
4、数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。(2)三角函数的周期: ; ; ;(3)与周期有关的结论:或的周期为8基本初等函数的图像与性质:.指数函数:;对数函数:;幂函数: ( ;正弦函数:;余弦函数: ;(6)正切函数:;一元二次函数:(a0);其它常用函数: 正比例函数:;反比例函数:;函数.分数指数幂:;(以上,且).; ; .对数的换底公式:.对数恒等式:.9二次函数:解析式:一般式:;顶点式:,为顶点;零点式:(a0).二次函数问题解决需考虑的因素:开口方向;对称轴;端点值;与坐标轴交点;判别式;两根符号。二次函数的图象的对称轴方程是,顶点坐标是。10函数图象: 图象
5、作法 :描点法 (特别注意三角函数的五点作图)图象变换法导数法图象变换: 平移变换:),左“+”右“”; )上“+”下“”; 对称变换:););); ); 翻折变换:)(去左翻右)y轴右不动,右向左翻(在左侧图象去掉);)(留上翻下)x轴上不动,下向上翻(|在下面无图象);12函数零点的求法:直接法(求的根);图象法;二分法.(4)零点定理:若y=f(x)在a,b上满足f(a)f(b)0,则y=f(x)在(a,b)内至少有一个零点。第三部分 三角函数、三角恒等变换与解三角形1角度制与弧度制的互化:弧度,弧度,弧度弧长公式:;扇形面积公式:。2三角函数定义:角终边上任一点(非原点)P,设则:3三
6、角函数符号规律:一全正,二正弦,三正切,四余弦;(简记为“全s t c”)4诱导公式记忆规律:“奇变偶不变,符号看象限”5对称轴:令,得对称中心:; 对称轴:令,得;对称中心:; 周期公式:函数及的周期 (A、为常数,且A0).函数的周期 (A、为常数,且A0).6同角三角函数的基本关系:7三角函数的单调区间及对称性:的单调递增区间为,单调递减区间为,对称轴为,对称中心为.的单调递增区间为,单调递减区间为,对称轴为,对称中心为.的单调递增区间为,对称中心为.8两角和与差的正弦、余弦、正切公式:;.;.=(其中,辅助角所在象限由点所在的象限决定, ).9二倍角公式:.(升幂公式).(降幂公式).
7、10正、余弦定理:正弦定理: (是外接圆直径)注:;。余弦定理:等三个;等三个。11.几个公式:三角形面积公式:(分别表示a、b、c边上的高);.内切圆半径r=;外接圆直径2R=第四部分 平面向量1.平面上两点间的距离公式:,其中A,B.2.向量的平行与垂直: 设=,=,且,则:=; ()=0.3.ab=|a|b|cos=xx2+y1y2; 注:|a|cos叫做a在b方向上的投影;|b|cos叫做b在a方向上的投影;ab的几何意义:ab等于|a|与|b|在a方向上的投影|b|cos的乘积。4.cos=;5.三点共线的充要条件:P,A,B三点共线。第五部分 数列1定义:等比数列 2等差、等比数列
8、性质: 等差数列 等比数列通项公式 前n项和 性质 an=am+ (nm)d, an=amqn-m; m+n=p+q时am+an=ap+aq m+n=p+q时aman=apaq成AP 成GP 成AP, 成GP,3常见数列通项的求法:an=S1 (n=1)SnSn-1 (n2)定义法(利用AP,GP的定义);累加法(型);公式法: 累乘法(型);待定系数法(型)转化为(6)间接法(例如:);(7)(理科)数学归纳法。4前项和的求法:分组求和法;错位相减法;裂项法。5等差数列前n项和最值的求法:最大值 ;利用二次函数的图象与性质。 第六部分 不等式1均值不等式:注意:一正二定三相等;变形:。2极值
9、定理:已知都是正数,则有:(1)如果积是定值,那么当时和有最小值;(2)如果和是定值,那么当时积有最大值.:若,则对于解集不是全集或空集时,对应的解集为“大两边,小中间”.如:当,;.4.含有绝对值的不等式:当时,有:;或.5*.分式不等式:(1); (2);(3) ; (4).6*.指数不等式与对数不等式(1)当时,;.(2)当时,;3不等式的性质:;;第七部分 概率1事件的关系:事件B包含事件A:事件A发生,事件B一定发生,记作;事件A与事件B相等:若,则事件A与B相等,记作A=B;并(和)事件:某事件发生,当且仅当事件A发生或B发生,记作(或);并(积)事件:某事件发生,当且仅当事件A发
10、生且B发生,记作(或) ;事件A与事件B互斥:若为不可能事件(),则事件A与互斥;对立事件:为不可能事件,为必然事件,则A与B互为对立事件。2概率公式:古典概型:;几何概型: ;第八部分 统计与统计案例1抽样方法:简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。注:每个个体被抽到的概率为;常用的简单随机抽样方法有:抽签法;随机数表法。系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。注:步骤:编号;分段
11、;在第一段采用简单随机抽样方法确定起始的个体编号;按预先制定的规则抽取样本。分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。注:每个部分所抽取的样本个体数=该部分个体数注:以上三种抽样的共同特点是:在抽样过程中每个个体被抽取的概率相等2频率分布直方图与茎叶图:用直方图反映样本的频率分布规律的直方图称为频率分布直方图。当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边像植物茎上长出来的叶子,这种表示数据的图
12、叫做茎叶图。3总体特征数的估计:样本平均数;样本方差 ;样本标准差=第九部分 算法初步1程序框图:图形符号: 终端框(起止框); 输入、输出框; 处理框(执行框); 判断框; 流程线 ;程序框图分类:顺序结构: 条件结构: 循环结构: r=0? 否 求n除以i的余数 输入n 是 n不是质数n是质数i=i+1 i=2 in或r=0?否 是注:循环结构分为:当型(while型)先判断条件,再执行循环体;直到型(until型)先执行一次循环体,再判断条件。2基本算法语句:输入语句 INPUT “提示内容”;变量 ;输出语句:PRINT “提示内容”;表达式 赋值语句: 变量=表达式条件语句: IF
13、条件THEN IF条件THEN 语句体 语句体1 END IF ELSE 语句体2 END IF循环语句:当型: 直到型: WHILE条件 DO 循环体 循环体 WEND LOOP UNTIL 条件新课标数学部分公式及结论2.从集合到集合的映射有个.3.函数的的单调性: (1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.4*.函数的图象的对称性:的图象关于直线对称;的图象关于直线对称;的图象关于点对称,的图象关于点对称.6奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函
14、数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数7多项式函数的奇偶性:多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.8.若将函数的图象右移、上移个单位,得到函数的图象;9.几个常见的函数方程: (1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,f(0)=1. 10*.几个函数方程的周期(约定a0)(1),则的周期T=a;(2),或,或,则的周期T=2a;11.等差数列的通项公式:,或.前n项和公式: .12.设数列是等差数列,是奇数项的和,是偶数项的和,是前n项的和,则前n项的和;当n为偶数时,其中d为公差;当n为奇数时,则,(其中是等差数列的中间一项)13.若等差数列和的前项的和分别为和,则.14.数列是等比数列,是其前n项的和,那么()=.15.分期付款(按揭贷款):每次还款元(贷款元,次还清,每期利率为).16.裂项法:; ; ;.17*常见三角不等式:(1)若,则.(2) 若,则.(3) .18.正弦、余弦的诱导公式:;.即:“奇变偶不变,符号看象限”.如,.19*.万能公式:;(正切倍角公式).20*.半角公式:.21.三角函数变换:相位变换:的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育法规真题练习试卷B卷附答案
- 2024年光学纤维面板系列项目资金需求报告代可行性研究报告
- 第七章 面谈课件
- “双减”背景下小学数学作业设计的策略研究实施方案范文
- 2024年适用职工劳动协议格式文件
- 2024年专业期货交易中介服务协议
- 扬州大学封志明老师预测《导游基础知识》模拟试题参考答案
- 设备设施运行维护管理方案5篇
- 2024年化工业品买卖协议
- 2024阁楼房屋销售协议模板
- 2024-2030年中国危化品行业发展趋势与投资前景展望报告
- 中国企业投资缅甸光伏发电市场机会分析及战略规划报告2024-2030年
- 2024年广东省深圳市中考历史试题
- 化工(危险化学品)企业主要负责人、安管员安全生产管理专项培训考核试卷(附参考答案)
- 2024年人教版小学三年级语文(上册)期中考卷及答案
- 《信息化项目验收工作规范》
- 2024年全国软件水平考试之高级网络规划设计师考试重点黑金模拟题(详细参考解析)
- 经济学题库(200道)
- 2024年巴西私人安保服务市场机会及渠道调研报告
- 课《闻王昌龄左迁龙标遥有此寄》跨学科公开课一等奖创新教学设计
- 2024年江苏省连云港市中考英语真题(含解析)
评论
0/150
提交评论