八年级数学下册162二次根式的乘除学案无答案新新人教_第1页
八年级数学下册162二次根式的乘除学案无答案新新人教_第2页
八年级数学下册162二次根式的乘除学案无答案新新人教_第3页
八年级数学下册162二次根式的乘除学案无答案新新人教_第4页
八年级数学下册162二次根式的乘除学案无答案新新人教_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、16.2 二次根式的乘除一、学习目标1、掌握二次根式的乘法法则和积的算术平方根的性质。2、熟练进行二次根式的乘法运算及化简。二、学习重点、难点重点: 掌握和应用二次根式的乘法法则和积的算术平方根的性质。难点: 正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。三、学习过程(一)复习回顾1、计算:(1)×=_ =_(2) × =_ =_(3) × =_ =_2、根据上题计算结果,用“>”、“<”或“=”填空:(1)×_(2)×_(3) ×_(二)提出问题1、二次根式的乘法法则是什么?如何归纳出这一法则的?2

2、、如何二次根式的乘法法则进行计算?3、积的算术平方根有什么性质?4、如何运用积的算术平方根的性质进行二次根式的化简。(三)自主学习自学课本第56页“积的算术平方根”前的内容,完成下面的题目:1、用计算器填空:(1)×_ (2)×_(3)×_ (4)×_2、由上题并结合知识回顾中的结论,你发现了什么规律?能用数学表达式表示发现的规律吗?3、二次根式的乘法法则是: (四)合作交流1、自学课本6页例1后,依照例题进行计算:(1)× (2)2×3 (3)· (4)··2、自学课本第67页内容,完成下列问题:(1)

3、用式子表示积的算术平方根的性质: 。(2)化简: (五)展示反馈展示学习成果后,请大家讨论:对于×的运算中不必把它变成后再进行计算,你有什么好办法?(六)精讲点拨1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。2、化简二次根式达到的要求:(1)被开方数进行因数或因式分解。(2)分解后把能开尽方的开出来。(七)拓展延伸1、判断下列各式是否正确并说明理由。(1)(2)=ab(3) 6×(-2)=(4) =122、不改变式子的值,把根号外的非负因式适当变形后移入根号内。(1) -3 (2) (八)达标测试:A组1、选

4、择题(1)等式成立的条件是( ) Ax1 Bx-1 C-1x1 Dx1或x-1(2)下列各等式成立的是( )A4×2=8 B5×4=20 C4×3=7 D5×4=20(3)二次根式的计算结果是( ) A2 B-2 C6 D122、化简: (1); (2);3、计算: (1); (2);B组1、选择题(1)若,则=( ) A4 B2 C-2 D1(2)下列各式的计算中,不正确的是( ) A=(-2)×(-4)=8 BCD2、计算:(1)6×(-2); (2); 二次根式的除法一、学习目标1、掌握二次根式的除法法则和商的算术平方根的性质。

5、2、能熟练进行二次根式的除法运算及化简。二、学习重点、难点重点: 掌握和应用二次根式的除法法则和商的算术平方根的性质。难点: 正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简。三、学习过程(一)复习回顾1、写出二次根式的乘法法则和积的算术平方根的性质2、计算: (1)3×(-4) (2)3、填空: (1)=_,=_(2)=_,=_(3)=_,=_ (二)提出问题:1、二次根式的除法法则是什么?如何归纳出这一法则的?2、如何二次根式的除法法则进行计算?3、商的算术平方根有什么性质?4、如何运用商的算术平方根的性质进行二次根式的化简?(三)自主学习自学课本第7页第8页内

6、容,完成下面的题目:1、由“知识回顾3题”可得规律:_ _ _ 2、利用计算器计算填空: (1)=_(2)=_(3)=_规律:_ _ _3、根据大家的练习和解答,我们可以得到二次根式的除法法则: 。 把这个法则反过来,得到商的算术平方根性质: 。(四)合作交流 1、 自学课本例3,仿照例题完成下面的题目: 计算:(1) (2) 2、自学课本例4,仿照例题完成下面的题目:化简:(1) (2) (五)精讲点拨1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。2、化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式。(六)拓展延伸阅读下列运算过程:,数学上将这种把分母的根号去掉的过程称作“分母有理化”。利用上述方法化简:(1) =_ ()=_() =_ _ () =_ _(七)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论