版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章 机械零件的强度(一)教学要求掌握极限应力图和单向稳定变应力时强度计算(二)教学的重点与难点极限应力图绘制及应用(三)教学内容§21 载荷与应力的分类一、载荷的分类 静载荷:载荷的大小与方向不随时间变化或随时间变化缓慢变载荷:1)循环变载荷(载荷循环变化) 2)随机(变)载荷载荷的频率和幅值均随机变化循环变载荷:a) 稳定循环变载荷每个循环内载荷不变,各循环周期又相同(往复式动力机曲轴)b) 不稳定循环变载荷每一个循环内载荷是变动的载荷:1)名义载荷;2)计算载荷。(如前章所述)二、应力的分类1、应力种类应力 静应力 不稳定变应力变应力中,每次应力变化的周期T、和应力幅变应力
2、三者之一不为常数 稳定循环变应力T、均不变不稳定变应力 规律性不稳定变应力 图2-2a 随机变应力统计 图2-2b稳定循环变应力的基本参数和种类:(参数间的关系:图示)2、稳定循环变应力的基本参数和种类a) 基本参数最大应力、最小应力,平均应力,应力幅最小应力平均应力 1 / 18应力幅 应力循环特性: 注意:一般以绝对值最大的应力为五者中,只要知道两者,其余参数即可知道,一般常用如下的参数组合来描述:和;和;和b) 稳定循环变应力种类 -1,=,=0 , 对称循环变应力按= 0,=0,=, 脉动循环变应力 , =+,=-, 不对称循环变应力 +1, 静应力其中最不利的是对称循环变应力。注意:
3、静应力只能由静载荷产生,而变应力可能由变载荷产生,也可能由静载荷产生,其实例如图2-4所示转动心轴表面上a点产生的应力情况3)名义应力和计算应力名义应力由名义载荷产生的应力计算应力由计算载荷产生的应力计算应力中计入了应力集中等影响。机械零件的尺寸常取决于危险截面处的最大计算应力§22 静应力时机械零件的强度计算静应力时零件的主要失效形式:塑性变形、断裂一、单向应力下的塑性零件强度条件: 或 、材料的屈服极限 、计算安全系数 ,许用安全系数二、复合应力时的塑性材料零件按第三或第四强度理论对弯扭复合应力进行强度计算设单向正应力和切应力分别为和由第三强度理论: 取(最大剪应力理论) 或由第
4、四强度理论: 或(最大变形能理论) 、分别为单向正应力和切应力时的安全系数,可由式(2-4)求得。三、脆性材料与低塑性材料脆性材料极限应力:(强度极限)塑性材料极限应力:(屈服极限)失效形式:断裂,极限应力强度极限和1、单向应力状态强度条件: 或 或 2、复合应力下工作的零件按第一强度条件: (最大主应力理论) 注意:低塑性材料(低温回火的高强度钢)强度计算应计入应力集中的影响 脆性材料(铸铁) 强度计算不考虑应力集中一般工作期内应力变化次数<103(104)可按静应力强度计算。§2-3 机械零件的疲劳强度计算一、变应力作用下机械零件的失效特征 1、失效形式:疲劳(破坏)(断裂
5、)机械零件的断裂事故中,有80%为疲劳断裂。2、疲劳破坏特征:1)断裂过程:产生初始裂反(应力较大处);裂纹尖端在切应力作用下,反复扩展,直至产生疲劳裂纹。2)断裂面:光滑区(疲劳发展区);粗糙区(脆性断裂区)(图2-5)3)无明显塑性变形的脆性突然断裂4)破坏时的应力(疲劳极限)远小于材料的屈服极限。3、疲劳破坏的机理:是损伤的累笱4、影响因素:除与材料性能有关外,还与,应力循环次数N,应力幅主要影响当平均应力、一定时,越小,N越少,疲劳强度越高二、材料的疲劳曲线和极限应力图疲劳极限循环变应力下应力循环N次后材料不发生疲劳破坏时的最大应力称为材料的疲劳极限疲劳寿命(N)材料疲劳失效前所经历的
6、应力循环次数N称为疲劳寿命1、疲劳曲线(-N曲线):一定时,材料的疲劳极限与应力循环次数N之间关系的曲线循环基数 持久极限1)有限寿命区当N<103(104)低周循环疲劳疲劳极限接近于屈服极限,可接静强度计算高周循环疲劳,当时,随N2)无限寿命区, 不随N增加而变化持久极限,对称循环为、,脉动循环时为、注意:有色金属和高强度合金钢无无限寿命区,如图所示。3)疲劳曲线方程常数疲劳极限: (2-9)寿命系数几点说明: 硬度350HBS钢,当时,取, 350HBS钢,时,取, 有色金属,(无水平部分),规定当时,取m指数与应力与材料的种类有关。钢 m=9拉、弯应力、剪应力 青铜 m= 9弯曲应
7、力 m=6接触应力 8接触应力越大,材料的疲劳极限与越大,(对称循环)最不利。2、材料的疲劳极限应力图同一种材料在不同的下的疲劳极限图(图)对任何材料(标准试件)而言,对不同的下有不同的,即每种下都对应着该材料的最大应力,再由可求出和、以为横坐标、为纵坐标,即可得材料在不同下的极限和的关系图简化的材料与零件的疲劳极限详应力图:如图2-7AB塑性材料所示,曲线上的点对应着不同下的材料疲劳极限(相应的应力循环次数为) 对称极限点 强度极限点, 脉动疲劳极限点屈服极限点简化极限应力线图:简化极限应力图可简化计算(曲线不好求,而直线好求)考虑塑性材料的最大应力不超过屈服极限,由点作135°(
8、与轴)斜线与的延长线交于,得折线,线上各点的横坐标为极限平均应力,线上各类的纵坐标为极限平均应力幅上各类:,如不会疲劳破坏上各类:,如不会屈服破坏零件的工作应力点位于折线以内时,其最大应力既不超过疲劳极限,又不超过屈服极限。以内为疲劳和塑性安全区以外为疲劳和塑性失效区,工作应力点离折线越远,安全程度愈高。材料的简化极限应力线图,可根据材料的和三个试验数据而作出。目前世界上常用的极限应力图 haigh图,即图(本书) goodmam图,即图 simith图,即图三、影响机械零件疲劳强度的主要因素和零件极限应力图由于实际机械零件与标准试件之间在绝对尺寸、表面状态、应力集中、环境介质等方面往往有差异
9、,这些因素的综合影响,使零件的疲劳极限不同于材料的疲劳极限,其中尤以应力集中、零件尺寸和表面状态三项因素对机械零件的疲劳强度影响最大。1、应力集中的影响有效应力集中系数零件受载时,在几何形状突变处(圆角、凹槽、孔等)要产生应力集中,对应力集中的敏感程度与零件的材料有关,一般材料强度越高,硬度越高,对应力集中越敏感,如合金钢材料比普通碳素钢对应力集中更敏感(玻璃材料对应力集中更敏感) (2-10a)其中,为考虑零件几何形状的理论应力集中系数 应力集中源处最大应力 应力集中源处名义应力材料对应力集中的敏感系数注意:若在同一截面处同时有几个应力集中源,则应采用其中最大的有效应力集中系数2、零件尺寸的
10、影响尺寸系数由于零件尺寸愈大时,材料的晶粒较粗,出现缺陷的概率大,而机械加工后表面冷作硬化层相对较薄,所以对零件疲劳强度的不良影响愈显著见表2-8(螺纹联接),图2-9(钢),图2-10(铸铁)轴毂过盈配合时,取表2-9若无数据时可取,或3、表面状态的影响1)表面质量系数零件加工的表面质量(主要指表面粗糙度)对疲劳强度的影响图2-11(弯曲疲劳时)而 由图2-11可知,钢的越高,表面愈粗糙,愈低,高强度合金钢制零件为使疲劳强度有所提高,其表面应有较高的表面质量。2)表面强化系数考虑对零件进行不同的强化处理,对零件疲劳强度的影响强化处理评火、渗氮、渗碳、热处理、抛光、喷丸、滚压等冷作工艺4、综合
11、影响系数和零件的极限应力图应力集中,零件尺寸和表面状态只对应力幅有影响,而对平均应力无影响试验而得。1)综合影响系数只对有影响,而对无影响(或应力集中只影响,而不影响)综合影响系数表示了材料极限应力幅与零件极限应力幅的比值,即 2、零件的极限应力图由于只对有影响、而对无影响,在材料的极限应力图上几个特殊点以坐标计入影响,得到零件极限应力线图上的几个特殊点。零件对称循环疲劳点零件脉动循环疲劳点而是静强度极限,其不受的影响,所以该段不必修正连AD并延长交CG于G点,则ADGC即为零件的简化极限应力图AG许用疲劳极限曲线,GC屈服极限曲线直线AG方程:设AG上任一点坐标,由已知两点A(0,),D()
12、求得为()化简后得 (2-16)或 (2-16)其中,标准试件中的材料特性 (2-19) 零件的材料特性 (2-18)一般碳钢,合金钢切应力同样可得: 且直线CG方程: 直线CG上任一点的坐标。四、单向稳定变应力时的疲劳强度计算 单向只有或根据零件危险剖面的和求出和,在零件极限应力图上标出其工作点(,),然后在零件极限应力图上ADGC上确定相应的极限应力点(),由允许的极限应力与工作应力可求得零件的安全系数,然而,如何确定与零件工作应力点相对应的极限应力点,这与零件工作应力的可能增长规律有关,即与零件的应力状态有关。一般有三种情况1、大多数转轴中的应力状态过原点与工作应力点M或N作连线交ADG
13、于和点,由于直线上任一点的应力循环特性均相同和点即为所求的极限应力点a)当工作应力点位于OAG内时极限应力为疲劳极限接疲劳强度计算,零件的极限应力(疲劳极限)AG:又:联立求得强度条件为:b)工作应力点位于OGC内(N点)极限应力为屈服极限按静强度计算,则极限应力点为,点位于GC上,2、振动中的受载弹簧的应力状态即需在极限应力图上找一个其平均应力与工作应力相同的极限应力如图,过工作应力点M(N)作与纵轴平行的轴线交AGC于()点,即为极限应力点a)当工作应力点位于OAGH区域极限应力为疲劳极限由 AG: 联立 MM2 (2-23)强度条件:b)工作应力点位于GHC区域内极限应力为屈服极限按静强
14、度计算极限应力点位于GCI,强度条件为:3、的情况变轴向变载荷的紧螺栓联接中的螺栓应力状态需找一个最小应力与工作应力的最小应力相同的极限应力,过工作应力点M(N)作与横坐标类45°的直线,则这直线任一点的最小应力均相同,直线与极限应力线图交点即为所求极限应力点。a)工作应力点位于OJGI区域内极限应力为疲劳极限,按疲劳强度计算。由:AG: 联立求解 : (2-25)强度条件为:b)工作应力点位于IGC区域内时极限应力为屈服极限,按静强度计算极限应力点为,位于GC上,静强度条件:c)工作应力位于OAJ区域内为负值,工程中罕见,故不作考虑。注意:1)若零件所受应力变化规律不能肯定,一般采
15、用的情况计算。2)上述计算均为按无限寿命进行零件设计,若按有限寿命要求设计零件时,即应力循环次数时,这时上述公式中的极限应力应为有限寿命的疲劳极限,即应以代,以代。3)当未知工作应力点所在区域时,应同时考虑可能出现的两种情况4)对切应力上述公式同样适用,只需将改为即可。5)等效应力幅当时,中可将看作为转化的应力幅,也可看成应力幅,是将平均应力折算为应力幅的折算系数将看成与原来作用的非对称循环变应力等效的对称循环变应力的应力幅(对称循环),而为对称循环的疲劳极限,也是对称循环的极限应力幅,即,五、双向稳定变应力时的疲劳强度计算零件剖面上同时作用有和,一般有拉扭复合和弯扭复合应力状态,目前,只有对
16、称循环下弯扭复合应力在同周期同相位状态下的疲劳强度理论比较成熟,应用比较多。1、对称循环稳定变应力时,当零件剖面上同时作用着相位相同的纵向和切向对称循环,稳定变应力和时,经试验后极限应力关系为(钢材) (2-29)式中,同时作用正应力和切应力的应力幅极限值(,同时作刚j ),为零件对称循环正应力和切应力时疲劳极限(、单独作用)式(2-29)在以的坐标系中为一个单位圆 圆弧任何一点即代表一对极限应力和,如果工作应力点M()在极限圆以内,则是安全的。M点所对应的极限应力点确定时,一般认为比值不变(多数情况如此),点在OM直线的延长线上,如图所示()计算安全系数 (a)将代入上式得(b)将式(b)代
17、入式(2-29)得记,则由此得:零件只受对称循环正应力时的安全系数零件只受对称循环切应力时的安全系数强度条件为2、零件受非对称循环变应力时,由式(2-21), 强度条件为六、单向不稳定变应力时的疲劳强度计算不稳定变应力 规律性如图2-17所示为规律性不稳定变应力直方图,例如机床主轴非规律性采用统计方法进行1、疲劳损伤累积假设每一次应力的作用下,零件的寿命就要受到微量的疲劳损伤,当疲劳损伤累积到一定程度,达到疲劳寿命极限时便发生疲劳断裂。变应力值:发生疲劳时极限循环次数:应力循环次数:对材料损伤率:由于当零件达到疲劳寿命极限时,理论上总寿命损伤率为1,极限状况时 或 (2-33)(Miner方程
18、,曼耐尔理论)注意:上述公式没有考虑应力次序的影响。(认为与应力作用的次序无关)实际上:当各应力从大到小次序作用时,上式左边小于1 当各应力从小到大次序作用时,上式左边大于1据试验:考虑应力大小作用次序时,通式为 (2-34)考虑试验数据的离散性,从平均意义看,用式(2-33)还是比较合理。另外,一般认为小于疲劳极限的应力对疲劳寿命无影响。2、不稳定变应力的疲劳强度计算1)当量应力计算法 2)当量循环次数计算法基本思想:将不稳定变应力转化为疲劳效果与之等效的稳定变应力,然而按稳定变应力进行疲劳强度计算。1)当量应力计算法将不稳定变应力()按疲劳损伤累积理论转化为一个循环次数为的当量应力,由式(2-33)得 (2-35)又由疲劳曲线可知: (2-36)将式(2-36)代入式(2-35)得:如果材料在上述应力作用下未达到破坏,则整理得:记当量应力对于受对称循环变应力的零件,其强度条件为:对于受非对称循环变应力的零件,其强度条件为:为的应力幅和平均应力部分。2)当量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (分析)白玉开采项目立项申请报告
- (2024)电子商务新城可行性研究报告申请建议书(一)
- 2023年铍项目融资计划书
- 2023年鞋用乳液胶粘剂项目融资计划书
- 安全培训课件-安全管理
- 养老院老人生活照顾人员管理制度
- 养老院老人健康监测人员培训制度
- CCAA质量管理体系审核员笔试模拟试题
- 二次根式小结与复习课件
- 挖机安全责任协议书范本(2篇)
- 精神科疾病的精神科诊断与治疗
- 医疗健康合作协议
- 戏剧表演社管理制度
- 水囊引产护理查房
- 2024届高考语文 语言文字运用 复习课件
- 2023年CQE客诉工程师年度总结及下年规划
- 2023年秋季国家开放大学-02272-数据结构(本)期末考试题带答案
- 有限空间消防水箱应急预案
- 江西省三新协同教研共同体2023-2024学年高一上学期12月联考物理试卷(解析版)
- 篮球原地单手肩上投篮 教案(表格式)
- 2021-2022学年广东省广州市天河区八年级(上)期末英语试卷
评论
0/150
提交评论