




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4.2.7 4.2.7 中值滤波 中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,因此它是一种非线性的图像平滑法。例:采用13窗口进行中值滤波原图像为:2 2 6 2 1 2 4 4 4 2 4处理后为: 2 2 2 2 2 2 4 4 4 4 4 它对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多的图像却不太合适。 对中值滤波法来说,正确选择窗口尺寸的大小是很重要的环节。一般很难事先确定最佳的窗口尺寸,需通过从小窗口到大窗口的中值滤波试验,再从中选取最佳的。 第1页/共81页原图像 中值滤波一维中值滤波的几
2、个例子(N=5) 离散阶跃信号、斜升信号没有受到影响。离散三角信号的顶部则变平了。对于离散的脉冲信号,当其连续出现的次数小于窗口尺寸的一半时,将被抑制掉,否则将不受影响。第2页/共81页 一维中值滤波的概念很容易推广到二维。一般来说,二维中值滤波器比一维滤波器更能抑制噪声。 二维中值滤波器的窗口形状可以有多种,如线状、方形、十字形、圆形、菱形等(见图)。 不同形状的窗口产生不同的滤波效果,使用中必须根据图像的内容和不同的要求加以选择。从以往的经验看,方形或圆形窗口适宜于外轮廓线较长的物体图像,而十字形窗口对有尖顶角状的图像效果好。 第3页/共81页 图(a)为原图像;图(b)为加椒盐噪声的图像
3、;图(c)和图 (d)分别为33、55模板进行中值滤波的结果。 可见中值滤波法能有效削弱椒盐噪声,且比邻域、超限像素平均法更有效。第4页/共81页1111911114.3 图像空间域锐化第5页/共81页 在图像的识别中常需要突出边缘和轮廓信息。图像锐化就是增强图像的边缘或轮廓。 图像平滑通过积分过程使得图像边缘模糊,图像锐化则通过微分而使图像边缘突出、清晰。 4.3.1 梯度锐化法 图像锐化法最常用的是梯度法。 对于图像f(x,y),在(x,y)处的梯度定义为 梯度是一个矢量,其大小和方向为 )13.4(),(),(),(yyxfxyxfyxffyxgrad)23 . 4()/()/()()(
4、y)grad(x,),(),(112),(2),(22xyxfyyxfxyyyxfxyxfyxtgfftgff第6页/共81页 对于离散图像处理而言,常用到梯度的大小,因此把梯度的大小习惯称为“梯度”。并且一阶偏导数采用一阶差分近似表示,即 fx =f(x +1 ,y)-f(x,y) fy=f(x,y +1)-f(x,y) 为简化梯度的计算,经常使用 grad(x,y)=Max(|fx|,|fy|) (4.3-4) 或 grad(x,y)=|fx|+|f y| (4.3-5) 除梯度算子以外,还可采用Roberts、Prewitt和Sobel 算子计算梯度,来增强边缘。 Roberts对应的模
5、板如图4.3.2所示。差分计算式如下 fx =|f(x+1,y+1)-f(x,y)| fy =|f(x+1,y)-f(x,y+1)| -1 -1 11 图4.3.2 Roberts梯度算子第7页/共81页 为在锐化边缘的同时减少噪声的影响,Prewitt从加大边缘增强算子的模板大小出发,由2x2扩大到3x3来计算差分,如图(a)所示。 (a)Prewitt 算子 (b)Sobel算子 Sobel在Prewitt算子的基础上,对4-邻域采用带权的方法计算差分,对应的模板如图(b)。 根据梯度计算式就可以计算Roberts、Prewitt和Sobel梯度。一旦梯度算出后,就可根据不同的需要生成不同
6、的梯度增强图像。 -101 -1-1-1 -101 -1-2-1-101000-202000-101111-101121第8页/共81页 第一种输出形式 g(x,y)=grad(x,y) (4.3-7) 此法的缺点是增强的图像仅显示灰度变化比较徒的边缘轮廓,而灰度变化比较平缓或均匀的区域则呈黑色。 第二种输出形式 式中T是一个非负的阈值。适当选取T,可使明显的边缘轮廓得到突出,又不会破坏原来灰度变化比较平缓的背景 第三种输出形式 它将明显边缘用一固定的灰度级LG来表现。 其它),(),(),(),(yxfTyxgradyxgradyxg其他,),(),(),(yxfTyxgradLyxgG第9
7、页/共81页 第四种输出形式 此方法将背景用一个固定的灰度级 LB来表现,便于研究边缘灰度的变化。 第五种输出形式 这种方法将明显边缘和背景分别用灰度级LG和LB表示,生成二值图像,便于研究边缘所在位置。 其他,),(,),(),(BLTyxgradyxgradyxg其他,),(,),(BGLTyxgradLyxg第10页/共81页第11页/共81页4.3.2 Laplacian增强算子 Laplacian 算子是线性二阶微分算子。即 2f(x,y)= 2222),(),(yyxfxyxf 对离散的数字图像而言,二阶偏导数可用二阶差分近似,可推导出Laplacian算子表达式为 2f(x,y)
8、= f(x+1,y)+f(x-1,y)+ f(x,y+1)+f(x,y-1)-4f(x,y) Laplacian增强算子为: g(x,y)=f(x,y)- 2f(x,y) =5f(x,y)- f(x+1,y)+ f(x-1,y)+f(x,y+1)+ f(x,y-1)0101-41010Laplace算子0-10-15-10-10增强算子第12页/共81页其特点是:1、在灰度均匀的区域或斜坡中间2f(x,y)为0,增强图像上像元灰度不变;2、在斜坡底或低灰度侧形成“下冲”;而在斜坡顶或高灰度侧形成“上冲”。 0 -1 0 -1 1 1 H1= -1 5 1 H2= -1 9 1 0 -1 0 -
9、1 1 1 4.3.3 4.3.3 高通滤波法 高通滤波法就是用高通滤波算子和图像卷积来增强边缘。常用的算子有:第13页/共81页4.44.4图像的频率域增强 图像增强的目的主要包括:消除噪声,改善图像的视觉效果;突出边缘,有利于识别和处理。前面是关于图像空间域增强的知识,下面介绍频率域增强的方法。 假定原图像为f(x,y),经傅立叶变换为F(u,v)。频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像g(x,y)。 频率域增强的一般过程如下: DFT H(u,v) IDFTf(x,y) F(u,v) F(u,v)H(u,v) g(x,
10、y) 滤波第14页/共81页 图像的平滑除了在空间域中进行外,也可以在频率域中进行。由于噪声主要集中在高频部分,为去除噪声改善图像质量,滤波器采用低通滤波器H(u,v)来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。常用的频率域低滤波器H(u,v)有四种:1理想低通滤波器 设傅立叶平面上理想低通滤波器离开原点的截止频率为D0,则理想低通滤波器的传递函数为 由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会导致边缘信息损失而使图像边模糊。 4.4.1频率域平滑) 14 . 4 (),(0),(1),(00DvuDDvuDvuH第15页/
11、共81页2Butterworth低通滤波器 n阶Butterworth滤波器的传递函数为: 它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。 )24 . 4(),(20),(11nDvuDvuH第16页/共81页3指数低通滤波器 指数低通滤波器是图像处理中常用的另一种平滑滤波器。它的传递函数为: 采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度较用Butterworth滤波产生的大些,无明显的振铃效应。 )34 . 4(e v)H(u,-0Dv)D(u,n第17页/共81页 4. 梯形
12、低通滤波器 梯形低通滤波器是理想低通滤波器和完全平滑滤波器的折中。它的传递函数为: 它的性能介于理想低通滤波器和指数滤波器之间,滤波的图像有一定的模糊和振铃效应。)44 . 4(Dv)D(u,0D),(DDv)D(u,1 v)H(u,110DDD-v)D(u,0101vuD第18页/共81页4.4.2 4.4.2 频率域锐化频率域锐化 图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的。频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱,再经逆傅立叶变换得到边缘锐化的图像。常用的高通滤波器有: 1)理想高通滤波器 二维理想高通滤波器的传
13、递函数为 )54 . 4(),(1),(0),(00DvuDDvuDvuH第19页/共81页2)巴特沃斯高通滤波器 n阶巴特沃斯高通滤波器的传递函数定义如下 H(u,v)=1/1+( D0/D(u,v)2n 3)指数滤波器 指数高通滤波器的传递函数为)74 . 4(),(),(0nvuDDevuH第20页/共81页4)梯形滤波器 梯形高通滤波器的定义为)84 . 4(Dv)D(u,1D),(DDv)D(u,0 v)H(u,001DDD-v)D(u,1101vuD 四种滤波函数的选用类似于低通。理想高通有明显振铃现象,即图像的边缘有抖动现象;Butterworth高通滤波效果较好,但计算复杂,其
14、优点是有少量低频通过,H(u,v)是渐变的,振铃现象 不明显;指数高通效果比Butterworth差些,振铃现象不明显;梯形高通会产生微振铃效果,但计算简单,较常用。 一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也使噪声增强。因此不能随意地使用。 第21页/共81页4.5 彩色增强技术 人眼的视觉特性 : 分辨的灰度级介于十几到二十几级之间 ; 彩色分辨能力可达到灰度分辨能力的百倍以上。 彩色增强技术是利用人眼的视觉特性,将灰度图像变成彩色图像或改变彩色图像已有彩色的分布,改善图像的可分辨性。彩色增强方法可分为伪彩色增强和假彩色增强两类。4.5.1 4.5.1
15、 伪彩色增强 伪彩色增强是把黑白图像的各个不同灰度级按照线性或非线性的映射函数变换成不同的彩色,得到一幅彩色图像的技术。使原图像细节更易辨认,目标更容易识别。 伪彩色增强的方法主要有密度分割法、灰度级一彩色变换和频率域伪彩色增强三种。 第22页/共81页1.1.密度分割法 密度分割法是把黑白图像的灰度级从0(黑)到M0(白)分成N个区间Ii(i=1,2,N),给每个区间Ii指定一种彩色Ci,这样,便可以把一幅灰度图像变成一幅伪彩色图像。 该方法比较简单、直观。缺点是变换出的彩色数目有限。 第23页/共81页2.2.空间域灰度级一彩色变换 根据色度学原理,将原图像f(x,y)的灰度范围分段,经过
16、红、绿、蓝三种不同变换TR()、TG()和TB(),变成三基色分量IR(x,y)、IG(x,y)、IB(x,y),然后用它们分别去控制彩色显示器的红、绿、蓝电子枪,便可以在彩色显示器的屏幕上合成一幅彩色图像。 第24页/共81页3.3.频率域伪彩色增强 频率域伪彩色增强的方法是: 把黑白图像经傅立叶变换到频率域,在频率域内用三个不同传递特性的滤波器分离成三个独立分量; 然后对它们进行逆傅立叶变换,便得到三幅代表不同频率分量的单色图像,接着对这三幅图像作进一步的处理(如直方图均衡化) 最后将它们作为三基色分量分别加到彩色显示器的红、绿、蓝显示通道,得到一幅彩色图像。 第25页/共81页4.5.2
17、 4.5.2 假彩色增强 假彩色增强是对一幅自然彩色图像或同一景物的多光谱图像,通过映射函数变换成新的三基色分量,彩色合成使感兴趣目标呈现出与原图像中不同的、奇异的彩色。 假彩色增强目的:一是使感兴趣的目标呈现奇异的彩色或置于奇特的彩色环境中,从而更引人注目;一是使景物呈现出与人眼色觉相匹配的颜色,以提高对目标的分辨力。 多光谱图像的假彩色增强可表示为 将可见光与非可见光波段结合起来,通过假彩色处理,就能获得更丰富的信息,便于对地物识别。) 15 . 4 (,.,.,.,.,.,.,212121iBFiGFiRFgggfBgggfGgggfR第26页/共81页对于自然景色图像,通用的线性假彩色
18、映射可表示为例如采用以下的映射关系则原图像中绿色物体会呈红色,蓝色物体会呈绿色,红色物体则呈兰色。 伪彩色增强与假彩色增强有何区别? ) 25 . 4 (333222111fffFFFBGRcbacbacbaBGR)35 . 4(001100010fffFFFBGRBGR?第27页/共81页第五章 图像复原与重建5.1 图像退化模型5.1.1 图像的退化 图像的退化是指图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像的质量变坏。 图像复原就是要尽可能恢复退化图像的本来面目,它是沿图像退化的逆过程进行处理。 典型的图像复原是根据图像退化的先验知识建立一个退化模型,以此模
19、型为基础,采用各种逆退化处理方法进行恢复,得到质量改善的图像。图像复原过程如下: 找退化原因建立退化模型反向推演恢复图像 可见,图像复原主要取决于对图像退化过程的先验知识所掌握的精确程度,体现在建立的退化模型是否合适。第28页/共81页 图像复原和图像增强的区别: 图像增强不考虑图像是如何退化的,而是试图采用各种技术来增强图像的视觉效果。因此,图像增强可以不顾增强后的图像是否失真,只要看得舒服就行。 而图像复原就完全不同,需知道图像退化的机制和过程等先验知识,据此找出一种相应的逆处理方法,从而得到复原的图像。 如果图像已退化,应先作复原处理,再作增强处理。 二者的目的都是为了改善图像的质量。
20、5.1.2 系统的描述 点源的概念 事实上,一幅图像可以看成由无穷多极小的像素所组成,每一个像素都可以看作为一个点源成像,因此,一幅图像也可以看成由无穷多点源形成的。第29页/共81页 在数学上,点源可以用狄拉克函数来表示。二维函数可定义为且满足它的一个重要特性就是采样特性。即 当=0时其它00, 0),(yxyx1,dxdyyxdxdyyx),(),(),(fdxdyyxyxfdxdyyxyxff),(),()0,0(第30页/共81页它的另一个重要特性就是位移性。用卷积符号 * 表示为因此还有二维线性位移不变系统 如果对二维函数施加运算T ,满足 ddyxfyxf),(),(),(),()
21、,(),(yxyxfyxf),(),(),(yxyxfyxfyxfTyxfTyxfyxfT,2121yxfaTyxafT,第31页/共81页则称该运算为二维线性运算。由它描述的系统,称为二维线性系统。 当输入为单位脉冲(x , y)时,系统的输出便称为脉冲响应,用h (x , y)表示。在图像处理中,它便是对点源的响应,称为点扩散函数。用图表示为 当输入的单位脉冲函数延迟了、单位,即当输入为(x , y )时,如果输出为h(x , y ),则称此系统为位移不变系统。第32页/共81页 对于一个二维线性位移不变系统,如果输入为f(x , y) ,输出为g (x , y),系统加于输入的线性运算为
22、T ,则有简记为 上式表明,线性位移不变系统的输出等于系统的输入和系统脉冲响应(点扩散函数)的卷积。ddyxfTyxfTyxg),(),(),(),(ddyxTf,),(线性 ddyxhf,移不变),(),(),(yxhyxfyxg第33页/共81页下图表示二维线性位移不变系统的输入、输出和运算关系 f(x,y) g(x,y)= f(x,y)* h(x,y)5.1.2 5.1.2 图像退化的数学模型 假定成像系统是线性位移不变系统 ,则获取的图像g(x,y)表示为 g(x,y)= f(x,y)* h(x,y)f(x,y)表示理想的、没有退化的图像,g(x,y)是退化(所观察到)的图像。 若受加
23、性噪声n(x,y)的干扰,则退化图像可表示为 g(x,y)= f(x,y)* h(x,y)+ n(x,y)这就是线性位移不变系统的退化模型。退化模型如图所示h(x,y)第34页/共81页采用线性位移不变系统模型的原由:1)由于许多种退化都可以用线性位移不变模型来近似,这样线性系统中的许多数学工具如线性代数,能用于求解图像复原问题,从而使运算方法简捷和快速。2)当退化不太严重时,一般用线性位移不变系统模型来复原图像,在很多应用中有较好的复原结果,且计算大为简化。3)尽管实际非线性和位移可变的情况能更加准确而普遍地反映图像复原问题的本质,但在数学上求解困难。只有在要求很精确的情况下才用位移可变的模
24、型去求解,其求解也常以位移不变的解法为基础加以修改而成。第35页/共81页5.3 频率域恢复方法 5.3.1 逆滤波恢复法 对于线性移不变系统而言对上式两边进行傅立叶变换得 H(u,v)称为系统的传递函数。从频率域角度看,它使图像退化,因而反映了成像系统的性能。 ),(),(),(),(yxnddyxhfyxg),(),(),(yxnyxhyxf),(),(),(),(vuNvuHvuFvuG第36页/共81页 通常在无噪声的理想情况下,上式可简化为则进行反傅立叶变换可得到f(x,y) 。以上就是逆滤波复原的基本原理。1/H(u,v)称为逆滤波器。 ),(),(),(vuHvuFvuG),(/
25、),(),(vuHvuGvuF 逆滤波复原过程可归纳如下:(1)对退化图像g(x,y)作二维离散傅立叶变换,得到G(u,v);(2)计算系统点扩散函数h(x,y)的二维傅立叶变换,得到H(u,v);(3)逆滤波计算(4)计算 的逆傅立叶变换,求得 。 ),(yxf),( vuF),(/),(),(vuHvuGvuF第37页/共81页),(vuF 若噪声为零,则采用逆滤波恢复法能完全再现原图像。 若噪声存在,而且H(u,v)很小或为零时,则噪声被放大。这意味着退化图像中小噪声的干扰在H(u,v)较小时,会对逆滤波恢复的图像产生很大的影响,有可能使恢复的图像和f(x,y)相差很大,甚至面目全非。
26、但实际获取的影像都有噪声,因而只能求F(u,v)的估 计值 。再作傅立叶逆变换得),(),(),(),(vuHvuNvuFvuF dudvevuHvuNyxfyxfvyuxj)(21),(),(),(),(第38页/共81页 为此改进的方法有: 在H(u,v)=0及其附近,人为地仔细设置H-1(u,v)的值,使N(u,v)*H-1(u,v)不会对F(u,v)产生太大影响。 下图给出了H(u,v)、H-1(u,v)同改进的滤波特性HI(u,v)的一维波形,从中可看出与正常的滤波的差别。使H-1(u,v)具有低通滤波性质。即使001DD 0DD ),(1),(vuHvuH第39页/共81页5.4
27、图像的几何校正 几何失真 图像在获取过程中,由于成像系统本身具有非线性、拍摄角度等因素的影响,会使获得的图像产生几何失真。 几何失真 系统失真 非系统失真。 系统失真是有规律的、能预测的;非系统失真则是随机的。 当对图像作定量分析时,就要对失真的图像先进行精确的几何校正(即将存在几何失真的图像校正成无几何失真的图像),以免影响定量分析的精度。 第40页/共81页几何校正方法 图像几何校正的基本方法是先建立几何校正的数学模型;其次利用已知条件确定模型参数;最后根据模型对图像进行几何校正。通常分两步:图像空间坐标变换;首先建立图像像点坐标(行、列号)和物方(或参考图)对应点坐标间的映射关系,解求映
28、射关系中的未知参数,然后根据映射关系对图像各个像素坐标进行校正;确定各像素的灰度值(灰度内插)。第41页/共81页5.4.1 5.4.1 空间坐标变换 实际工作中常以一幅图像为基准,去校正另一幅几何失真图像。通常设基准图像f(x,y)是利用没畸变或畸变较小的摄像系统获得的,而有较大几何畸变的图像用g(x,y)表示,下图是一种畸变情形。 设两幅图像几何畸变的关系能用解析式来描述。),(1yxhx ),(2yxhy 第42页/共81页 通常h1(x,y)和h2(x,y)可用多项式来近似 当n=1时,畸变关系为线性变换, 上述式子中包含a00、a10、a01 、b00、b10、b016个未知数,至少
29、需要3个已知点来建立方程式,解求未知数。 niinjjiijyxax00niinjjiijyxby00yaxaax011000ybxbby011000第43页/共81页 当n=2时,畸变关系式为 包含12个未知数,至少需要6个已知点来建立关系式,解求未知数。 几何校正方法可分为直接法和间接法两种。20211220011000yaxyaxayaxaax20211220011000ybxybxbybxbby第44页/共81页一、直接法 利用若干已知点坐标,根据 解求未知参数;然后从畸变图像出发,根据上述关系依次计算每个像素的校正坐标,同时把像素灰度值赋予对应像素,这样生成一幅校正图像。 但该图像像
30、素分布是不规则的,会出现像素挤压、疏密不均等现象,不能满足要求。因此最后还需对不规则图像通过灰度内插生成规则的栅格图像。 niinjjiijniinjjiijyxbyxhyyxayxhx002001),(),(第45页/共81页二、间接法 设恢复的图像像素在基准坐标系统为等距网格的交叉点,从网格交叉点的坐标(x,y)出发,若干已知点,解求未知数。根据推算出各格网点在已知畸变图像上的坐标(x,y)。由于(x (x,y)一般不为整数,不会位于畸变图像像素中心,因而不能直接确定该点的灰度值,而只能在畸变图像上,由该像点周围的像素灰度值通过内插,求出该像素的灰度值,作为对应格网点的灰度,据此获得校正图
31、像。 niinjjiijniinjjiijyxbyxhyyxayxhx002001),(),(第46页/共81页 由于间接法内插灰度容易,所以一般采用间接法进行几何纠正。5.4.2 5.4.2 像素灰度内插方法 常用的像素灰度内插法有最近邻元法、双线性内插法和三次内插法三种。1最近邻元法 在待求点的四邻像素中,将距离这点最近的相邻像素灰度赋给该待求点。 该方法最简单,效果尚佳,但校正后的图像有明显锯齿状,即存在灰度不连续性。第47页/共81页2双线性内插法 双线性内插法是利用待求点四个邻像素的灰度在两个方向上作线性内插。如图,下面推导待求像素灰度值的计算式。 对于(i,j+v)有f(i,j+v
32、)=f(i,j+1)-f(i,j)v +f(i,j) 对于(i+1,j+v)有f(i+1,j+v)=f(i+1,j+1)- f(i+1,j)v+f(i+1,j) 第48页/共81页 对于(i+u,j+v)有f(i+u,j+v)=f(i+1,j+v)-f(i,j+v)u+f(i,j+v)=) 1, 1(), 1()1 () 1, ()1 (), ()1)(1 (jiuvfjifvujivfujifvu 该方法要比最近邻元法复杂,计算量大。但没有灰度不连续性的缺点,结果令人满意。它具有低通滤波性质,使高频分量受损,图像轮廓有一定模糊。第49页/共81页(i-1,j-1)(i-1,j+2)(i+2,
33、j-1)(i+2,j+2)(x,y)u v3三次内插法 该方法利用三次多项式S(x)来逼近理论上的最佳插值函数sin(x)/x。其数学表达式为:2|02|1|5|841|0|21)(3232xxxxxxxxxS第50页/共81页其中A=s(1+v) s(v) s(1-v) s(2-v)2, 2() 1, 2(), 2() 1, 2()2, 1() 1, 1(), 1() 1, 1()2,() 1,(),() 1,()2, 1() 1, 1(), 1() 1, 1(jifjifjifjifjifjifjifjifjifjifjifjifjifjifjifjifBc=s(1+u) s(u) s(1
34、-u) s(2-u)T 该算法计算量最大,但内插效果最好,精度最高。 待求像素(x,y)的灰度值由其周围十六个点的灰度值加权内插得到。可推导出待求像素的灰度计算式如下:f(x,y)=A B C第51页/共81页原始影像灰度表面 最近邻内插法双线性内插法 三次内插法像素灰度内插法效果比较第52页/共81页5.5 图像的几何变换图像的几何变换 图像处理时,往往会遇到需要对图像进行放大、缩小、旋转等操作。第53页/共81页5.5.1 图像的缩小图像的缩小一、图像的尺寸减半 2M*2N的图像缩小为:M*N的图像。 处理方法是: 取偶数行和偶数列构成新的图像。第54页/共81页图像的减半缩小效果图像的减
35、半缩小效果第55页/共81页二、依比例的缩小: M*N大小的图像缩小为:L*S大小。其中:M/N=L/S=k.1.计算c= L / M2.设旧图像是F(x,y),新图像是I (x,y) 则:I (x,y) =F(int(c*x),int(c*y)8463取:2,3,4,6,7,8列;2,3,4行第56页/共81页图像的按比例缩小效果图像的按比例缩小效果第57页/共81页三、不依比例缩小这种操作一定带来图像的几何畸变。M*N大小的图像缩小为:L*S大小。其中:M/L=k1, N/S=k2.1.计算c1=1/k1,c2=1/k2 2.设旧图像是F(x,y),新图像是I (x,y) 则:I (x,y
36、) =F(int(c1*x),int(c2*y)6442取:2,3,5,6列;2,4行第58页/共81页图像的不按比例任意缩图像的不按比例任意缩小小第59页/共81页 5.5.2 图像的放大图像的放大 图像的缩小操作中,是从现有的信息里如何挑选所需要的有用信息。 图像的放大操作中,则需对尺寸放大后所多出来的空格填入适当的值,这是信息的估计问题,所以较图像的缩小要难一些。 一、图像的成倍放大 常用的方法是:原来的一个点的值填到一个2*2的小块中去。第60页/共81页图像的成倍放大效果图像的成倍放大效果第61页/共81页二、图像的按比例放大方法: 方法一: 将一点的值用一个小块来代替。即: 第62
37、页/共81页方法二: M*N大小的图像放大为:L*S大小。其中:M/N=L/S=k.1.计算c= L / M2.设旧图像是F(x,y),新图像是I (x,y) 则:I (x,y) =F(int(c*x),int(c*y)第63页/共81页图像大比例放大时的马赛克效应图像大比例放大时的马赛克效应放大10倍思考: 如果比例太大,两种方法都会出现马赛克效应。你有没有办法解决?第64页/共81页三、任意不依比例放大 这种操作一定带来图像的几何畸变。 M*N大小的图像放大为:L*S大小。 其中: L / M =k1, S / N =k2.1.计算c1=k1,c2=k2 2.设旧图像是F(x,y),新图像
38、是I (x,y) 则:I (x,y) =F(int(c1*x),int(c2*y)第65页/共81页图像不按比例放大图像不按比例放大第66页/共81页5.5.3 图像的旋转图像的旋转 图像的旋转实际上是坐标系的旋转,下图给出了图像旋转的原理示意图。第67页/共81页5.5.3 图像的旋转图像的旋转 为了尽量不扩大画布,所以是以画面的中心点为坐标原点进行旋转的。所以有: 设图像大小为M*N,作新图像的画布为M1*N1.MM21NN212/1sin)2/(cos)2/(MNyMxX2/1cos)2/(sin)2/(NNyMxY第68页/共81页5.5.3 图像的旋转图像的旋转 因为像素的坐标都是整
39、数,所以当用前面的方法旋转时,会出现画面上有许多的空点,(即白点)这就影响了旋转图像的效果。为此我们还需要进行图像的空点的插值。第69页/共81页图像的旋转效图像的旋转效果果第70页/共81页5.5.3 图像的旋转图像的旋转 最简单的方法是行插值或是列插值方法:1. 找出当前行的最小和最大的非白点的坐 标,记作:(i,k1)、(i,k2)。2. 在(k1,k2)范围内进行插值,插值的方法 是:空点的像素值等于前一点的像素值。3. 同样的操作重复M1行。第71页/共81页5.5.3 图像的旋转图像的旋转插值处理示意图:第72页/共81页图像旋转中的插值处理效果图像旋转中的插值处理效果第73页/共81页5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 村道公路塌方清理施工方案
- 人工智能图像识别技术知识点总结与测试卷
- 六楼露台防水施工方案
- 2025年口腔科学试题及答案
- 2025年直播小作坊面试题及答案
- 本学期工作计划范文10篇
- 金桔果树嫁接方法
- 《跨境电商》课件-南美洲跨境电商发展的环境与状况
- 2025年R134a制冷剂行业发展趋势分析
- 苏科版二年级下册数学口算题
- 2022年上海高考语文样卷及参考答案
- 国内外钢材牌号对照表
- 一年级下册地方课程教案
- 有趣的仿生设计(课堂PPT)
- 第二章 航空飞行常见疾病
- 个体诊所聘用医师合同范本
- 航运公司开展安全管理体系有效性
- 牛羊定点屠宰厂项目可行性研究报告-甲乙丙资信
- 妊娠糖尿病-杨慧霞.ppt
- 上海机场控制区通行证申请表(人员)
- (完整word版)消化系统知识点整理
评论
0/150
提交评论