版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论本章内容本章内容1.1 矢量代数矢量代数1.2 三种常用的正交曲线坐三种常用的正交曲线坐标系标系1.3 标量场的梯度标量场的梯度1.4 矢量场的通量与散度矢量场的通量与散度1.5 矢量场的环流和旋度矢量场的环流和旋度1.6 无旋场与无散场无旋场与无散场1.7 拉普拉斯运算与格林定拉普拉斯运算与格林定理理1.8 亥姆霍兹定理亥姆霍兹定理第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论1. 1. 标量和矢量标量和矢量矢量的大小或模:矢量的大小或模:AA矢量的单位矢量:矢量的单位矢量:标量:一
2、个只用大小描述的物理量。标量:一个只用大小描述的物理量。AAeA矢量的代数表示:矢量的代数表示:AeAeAAA1.1 矢量代数矢量代数矢量:一个既有大小又有方向特性的物理量,常用黑体字矢量:一个既有大小又有方向特性的物理量,常用黑体字 母或带箭头的字母表示。母或带箭头的字母表示。 矢量的几何表示:一个矢量可用一条有方向的线段来表示矢量的几何表示:一个矢量可用一条有方向的线段来表示 留意:单位矢量不一定是常矢量。留意:单位矢量不一定是常矢量。 A矢量的几何表示矢量的几何表示常矢量:大小和方向均不变的矢量。常矢量:大小和方向均不变的矢量。 第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论zzy
3、yxxAeAeAeAAAAAAAxyzcoscoscos)coscoscos(zyxeeeAA矢量用坐标分量表示矢量用坐标分量表示coscoscoszyxAeeeezAxAAyAzxyO第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论(1矢量的加减法矢量的加减法)()()(zzzyyyxxxBAeBAeBAeBA 两矢量的加减在几何上是以这两矢量为两矢量的加减在几何上是以这两矢量为邻边的平行四边形的对角线邻边的平行四边形的对角线, ,如下图。如下图。矢量的加减符合交换律和结合律矢量的加减符合交换律和结合律2. 矢量的代数运算矢量的代数运算 矢量的加法矢量的加法BAAB矢量的减法矢量的减法B
4、AABB 在直角坐标系中两矢量的加法和减法:在直角坐标系中两矢量的加法和减法:结合律结合律()()ABCABCABBA交换律交换律第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论(2 2标量乘矢量标量乘矢量(3矢量的标积点积)矢量的标积点积)zzyyxxkAekAekAeAkzzyyxxBABABAABBAcos A BB A矢量的标积符合交换律矢量的标积符合交换律1zzyyxxeeeeee0 xzzyyxeeeeeeAB矢量矢量 与与 的夹角的夹角ABA B A B 0BA/ A BAB第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论(4矢量的矢积叉积)矢量的矢积叉积)sinABeB
5、An)()()(xyyxzzxxzyyzzyxBABAeBABAeBABAeBAzyxzyxzyxBBBAAAeeeBAABBAsinABBABA矢量矢量 与与 的叉积的叉积AB用坐标分量表示为用坐标分量表示为写成行列式形式为写成行列式形式为BAABBA假设假设 ,那么,那么BA/0BA假设假设 ,那么,那么第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论(5 5矢量的混合运算矢量的混合运算CBCACBA)(CBCACBA)()()()(BACACBCBACBABCACBA)()()( 分配律分配律 分配律分配律 标量三重积标量三重积 矢量三重积矢量三重积第第1 1章章 矢量分析矢量分析电
6、磁场理论电磁场理论 三维空间任意一点的位置可通过三条相互正交曲线的交点来确定。三维空间任意一点的位置可通过三条相互正交曲线的交点来确定。1.2 三种常用的正交曲线坐标系三种常用的正交曲线坐标系 在电磁场与波理论中,三种常用的正交曲线坐标系为:直角坐标系、圆柱在电磁场与波理论中,三种常用的正交曲线坐标系为:直角坐标系、圆柱坐标系和球坐标系。坐标系和球坐标系。 三条正交曲线组成的确定三维空间任意点位置的体系,称为三条正交曲线组成的确定三维空间任意点位置的体系,称为正交曲线坐标系;三条正交曲线称为坐标轴;描述坐标轴的量称正交曲线坐标系;三条正交曲线称为坐标轴;描述坐标轴的量称为坐标变量。为坐标变量。
7、第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论zeyexerzyx位置矢量位置矢量面元矢量面元矢量线元矢量线元矢量zeyexelzyxddddzyelleSxzyxxdddddyxelleSzyxzzddddd体积元体积元zyxVddddzxelleSyzxyyddddd坐标变量坐标变量zyx,坐标单位矢量坐标单位矢量zyxeee, 点点P(x0,y0,z0)0yy(平面)(平面) o x y z0 xx(平面)(平面)0zz(平面)(平面)P 直角坐标系直角坐标系 xezeyex yz直角坐标系的长度元、面积元、体积元直角坐标系的长度元、面积元、体积元 odzd ydxzyeSxxdd
8、dyxeSzzdddzxeSyyddd第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论dddddddddddddddzzzzzelleSzelleSzelleSz,坐标变量坐标变量zeee,坐标单位矢量坐标单位矢量zeerz位置矢量位置矢量zeeelzdddd线元矢量线元矢量zVdddd体积元体积元面元矢量面元矢量圆柱坐标系中的线元、面元和体积元圆柱坐标系中的线元、面元和体积元圆柱坐标系圆柱坐标系第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论ddsinddd2relleSrrrddsindddrrelleSzrdddddrrelleSr3. 球坐标系球坐标系球坐标系球坐标系球坐标系中
9、的线元、面元和体积元球坐标系中的线元、面元和体积元, r坐标变量坐标变量eeer,坐标单位矢量坐标单位矢量rerr位置矢量位置矢量dsindddrererelr线元矢量线元矢量dddsind2rrV 体积元体积元面元矢量面元矢量第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论xeyezeeezecossin0cossin0001eezereeesin0cossincos0001zereeecossincossinsincos0 xeyesinsinsincoscossinoxy单位圆单位圆 直角坐标系与柱坐标系之间直角坐标系与柱坐标系之间坐标单位矢量的关系坐标单位矢量的关系xeyeeeoz
10、单位圆单位圆 柱坐标系与球坐标系之间柱坐标系与球坐标系之间坐标单位矢量的关系坐标单位矢量的关系zeeree第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论1.3 标量场的梯度标量场的梯度q 如果物理量是标量,称该场为标量场。如果物理量是标量,称该场为标量场。q 例如:温度场、电位场、高度场等。例如:温度场、电位场、高度场等。q 如果物理量是矢量,称该场为矢量场。如果物理量是矢量,称该场为矢量场。q 例如:流速场、重力场、电场、磁场等。例如:流速场、重力场、电场、磁场等。q 如果场与时间无关,称为静态场,反之为时变场。如果场与时间无关,称为静态场,反之为时变场。时变标量场和矢量场可分别表示为
11、:时变标量场和矢量场可分别表示为: 、),(tzyxu),(tzyxF 确定空间区域上的每一点都有确定物理量与之对应,称在确定空间区域上的每一点都有确定物理量与之对应,称在该区域上定义了一个场。该区域上定义了一个场。从数学上看,场是定义在空间区域上的函数:从数学上看,场是定义在空间区域上的函数:标量场和矢量场标量场和矢量场、),(zyxu),(zyxF静态标量场和矢量场可分别表示为:静态标量场和矢量场可分别表示为:第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论 标量场的等值面标量场的等值面标量场的等值线标量场的等值线( (面面) )等值面等值面: : 标量场取得同一数值的点在空标量场取得
12、同一数值的点在空 间形成的曲面。间形成的曲面。Czyxu),(等值面方程:等值面方程:常数常数C 取一系列不同的值,就得到一系列取一系列不同的值,就得到一系列不同的等值面,形成等值面族;不同的等值面,形成等值面族;标量场的等值面充满场所在的整个空间;标量场的等值面充满场所在的整个空间;标量场的等值面互不相交。标量场的等值面互不相交。 等值面的特点:等值面的特点:意义意义: : 形象直观地描述了物理量在空间形象直观地描述了物理量在空间 的分布状态。的分布状态。第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论2. 方向导数方向导数意义:方向导数表示场沿某方向的空间变化率。意义:方向导数表示场沿
13、某方向的空间变化率。00coscoscos|limMluuuuullxyz 概念:概念: l0ul u(M) u(M)沿沿 方向增加;方向增加; l0ul u(M) u(M)沿沿 方向减小;方向减小; l0ul u(M) u(M)沿沿 方向无变化。方向无变化。 M0lMl方向导数的概念方向导数的概念 l特点:方向导数既与点特点:方向导数既与点M0有关,也与有关,也与 方向有关。方向有关。问题:在什么方向上变化率最大、其最大的变化率为多少?问题:在什么方向上变化率最大、其最大的变化率为多少? 的方向余弦。的方向余弦。 l式中:式中: coscoscos、第第1 1章章 矢量分析矢量分析电磁场理论
14、电磁场理论梯度的表达式:梯度的表达式:zueueueuz1圆柱坐标系圆柱坐标系 ureurerueursin11球坐标系球坐标系zueyuexueuzyx直角坐标系直角坐标系 3. 标量场的梯度(标量场的梯度( 或或 )graduu意义:描述标量场在某点的最大变化率及其变化最大的方向意义:描述标量场在某点的最大变化率及其变化最大的方向概念:概念: ,其中,其中 取得最大值的方向取得最大值的方向max|luuelluel第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论标量场的梯度是矢量场,它在空间某标量场的梯度是矢量场,它在空间某点的方向表示该点场变化最大增大点的方向表示该点场变化最大增大的
15、方向,其数值表示变化最大方向上的方向,其数值表示变化最大方向上场的空间变化率。场的空间变化率。标量场在某个方向上的方向导数,是标量场在某个方向上的方向导数,是梯度在该方向上的投影。梯度在该方向上的投影。梯度的性质:梯度的性质:梯度运算的基本公式:梯度运算的基本公式:uufufuvvuuvvuvuuCCuC)()()()()(0标量场的梯度垂直于通过该点的等值面或切平面)标量场的梯度垂直于通过该点的等值面或切平面)第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论 解解 (1) (1)由梯度计算公式,可求得由梯度计算公式,可求得P P点的梯度为点的梯度为PzyxPzyxzeyexe)(22zy
16、xzyxeeeeyexe22)22()1 , 1 , 1( 例例1.2.1 1.2.1 设一标量函数设一标量函数 (x,y,z) = x2 (x,y,z) = x2y2y2z z 描述了空描述了空间标量场。试求:间标量场。试求: (1) (1) 该函数该函数 在点在点P(1,1,1)P(1,1,1)处的梯度,以及表示该梯处的梯度,以及表示该梯度方向的单位矢量。度方向的单位矢量。 (2) (2) 求该函数求该函数 沿单位矢量沿单位矢量方向的方向导数,并以点方向的方向导数,并以点P(1,1,1)P(1,1,1)处的方向导数值与该点的梯度处的方向导数值与该点的梯度值作以比较,得出相应结论。值作以比较
17、,得出相应结论。ooo60cos45cos60coszyxleeee第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论表征其方向的单位矢量表征其方向的单位矢量 222(1,1,1)22221333(2 )(2 )( 1)xyzlxyzPPexeyeeeeexy (2) 由方向导数与梯度之间的关系式可知,沿el方向的方向导数为对于给定的对于给定的P P点,上述方向导数在该点取值为点,上述方向导数在该点取值为(1,1,1)1221222Pxyl)212221()22(zyxzyxleeeeyexeel212 yx第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论而该点的梯度值为而该点的梯度值为
18、 222(1,1,1)(2 )(2 )( 1)3Pxy 显然,梯度 描述了P点处标量函数 的最大变化率,即最大的方向导数,故 恒成立。PPPl 第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论1.4 矢量场的通量与散度矢量场的通量与散度 1. 矢量线矢量线 意义:形象直观地描述了矢量场的空间分意义:形象直观地描述了矢量场的空间分 布状态。布状态。),(d),(d),(dzyxFzzyxFyzyxFxzyx矢量线方程:矢量线方程:概念:矢量线是这样的曲线,其上每一概念:矢量线是这样的曲线,其上每一 点的切线方向代表了该点矢量场点的切线方向代表了该点矢量场 的方向。的方向。矢量线矢量线OM F
19、drrrdr第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论2. 矢量场的通量矢量场的通量 问题:如何定量描述矢量场的大小? 引入通量的概念。 dddnSSFSF eS通量的概念通量的概念ddnSe S其中:其中:面积元矢量;面积元矢量;ne面积元的法向单位矢量;面积元的法向单位矢量;dSddnF e S穿过面积元穿过面积元 的通量。的通量。 如果曲面如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面是闭合的,则规定曲面的法向矢量由闭合曲面内指向外,矢量场对闭合曲面的通量是内指向外,矢量场对闭合曲面的通量是),(zyxFSdne面积元矢量面积元矢量SnSSeFSFdd第第1 1章章 矢
20、量分析矢量分析电磁场理论电磁场理论0通过闭合曲面有通过闭合曲面有净的矢量线穿出净的矢量线穿出0有净的矢有净的矢量线进入量线进入0进入与穿出闭合曲进入与穿出闭合曲面的矢量线相等面的矢量线相等矢量场通过闭合曲面通量的三种可能结果矢量场通过闭合曲面通量的三种可能结果 闭合曲面的通量从宏观上建立了矢量场通过闭合曲面的通闭合曲面的通量从宏观上建立了矢量场通过闭合曲面的通量与曲面内产生矢量场的源的关系。量与曲面内产生矢量场的源的关系。通量的物理意义通量的物理意义第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论3. 矢量场的散度矢量场的散度 为了定量研究场与源之间的关系,需建立场空间任意点小为了定量研究
21、场与源之间的关系,需建立场空间任意点小体积元的通量源与矢量场小体积元曲面的通量的关系。利体积元的通量源与矢量场小体积元曲面的通量的关系。利用极限方法得到这一关系:用极限方法得到这一关系:称为矢量场的散度。称为矢量场的散度。 散度是矢量通过包含该点的任意闭合小曲面的通量与曲面元体积之比的散度是矢量通过包含该点的任意闭合小曲面的通量与曲面元体积之比的极限。极限。FVSzyxFzyxFSVd),(lim),(0第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论圆柱坐标系圆柱坐标系)(sin1)(sinsin1)(122FrFrFrrrFrzFFFFz)(球坐标系球坐标系zFyFxFFzyx直角坐标
22、系直角坐标系散度的表达式:散度的表达式:散度的有关公式:散度的有关公式:GFGFfFFfFfkFkFkfCfCCCC)()(为常量)()()()为常矢量(0第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论直角坐标系下散度表达式的推导直角坐标系下散度表达式的推导 000000000,(,),22xxxx y zFxxF xy zF x y zx000000000,(,),22xxxx y zFxxF xy zF x y zx000000(,)(,)22xxxFxxF xyzF xyzy zx y zx 由此可知,穿出前、后两侧面的净由此可知,穿出前、后两侧面的净通量值为通量值为 不失一般性,
23、令包围不失一般性,令包围P点的微体积点的微体积 V 为一直平行六面体,为一直平行六面体,如下图。那么如下图。那么oxy在直角坐标系中计算在直角坐标系中计算zzxyPF第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论根据定义,则得到直角坐标系中的散度根据定义,则得到直角坐标系中的散度 表达式为表达式为 同理,分析穿出另两组侧面的净通量,并合成之,即得由点同理,分析穿出另两组侧面的净通量,并合成之,即得由点P 穿出该六面体的净通量为穿出该六面体的净通量为zFyFxFVSFFzyxSVdlim0zyxzFzyxyFzyxxFSFzyxSd第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论4.
24、散度定理散度定理VSVFSFdd体积的剖分体积的剖分VS1S2en2en1S 从散度的定义出发,可以得到矢量场在空间任意闭合曲面的从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即 散度定理是闭合曲面积散度定理是闭合曲面积分与体积分之间的一个变换分与体积分之间的一个变换关系,在电磁理论中有着广关系,在电磁理论中有着广泛的应用。泛的应用。第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论1.5 矢量场的环流和旋度矢量场的环流和旋度 矢量场的环流与旋涡源矢量场的环流与旋涡源 例如:流速场
25、。例如:流速场。 不是所有的矢量场都由通量源激发。存在另一类不同于通不是所有的矢量场都由通量源激发。存在另一类不同于通量源的矢量源,它所激发的矢量场的力线是闭合的,它对于任量源的矢量源,它所激发的矢量场的力线是闭合的,它对于任何闭合曲面的通量为零。但在场所定义的空间中闭合路径的积何闭合曲面的通量为零。但在场所定义的空间中闭合路径的积分不为零。分不为零。第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论 如磁场沿任意闭合曲线的积分与通过闭合曲线所围曲面的电如磁场沿任意闭合曲线的积分与通过闭合曲线所围曲面的电流成正比,即流成正比,即SCSzyxJIlzyxBd),(d),(00上式建立了磁场的环
26、流与电流的关系。上式建立了磁场的环流与电流的关系。 磁感应线要磁感应线要么穿过曲面么穿过曲面磁感应线要么同时磁感应线要么同时穿入和穿出曲面穿入和穿出曲面磁感应线磁感应线第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论q 如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。旋场,又称为保守场。ClzyxFd),(环流的概念环流的概念 矢量场对于闭合曲线矢量场对于闭合曲线C 的环流定义为该矢量对闭合曲线的环流定义为该矢量对闭合曲线C 的线积分,即的线积分,即q 如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为如果矢量场
27、对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。电流是有旋矢量场,能够激发有旋矢量场的源称为旋涡源。电流是磁场的旋涡源。磁场的旋涡源。第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论 矢量场的环流给出了矢量场与积分回路所围曲面内旋涡源矢量场的环流给出了矢量场与积分回路所围曲面内旋涡源宏观联系。为了给出空间任意点矢量场与旋涡源的关系,引入宏观联系。为了给出空间任意点矢量场与旋涡源的关系,引入矢量场的旋度。矢量场的旋度。 SCMFn2. 矢量场的旋度(矢量场的旋度( ) F (1环流面密度环流面密度CSnlFSFd1limrot0称为矢量场在点称为矢量场
28、在点M 处沿方向处沿方向 的环流面密度。的环流面密度。n特点:其值与点特点:其值与点M 处的方向处的方向 有关。有关。n 过点过点M 作一微小曲面作一微小曲面S,它的边界曲线记为,它的边界曲线记为C,曲面的法,曲面的法线方向线方向 与曲线的绕向成右手螺旋法则。当与曲线的绕向成右手螺旋法则。当S0时,极限时,极限n第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论而而 推导推导 的示意图如图所示。的示意图如图所示。rotxFoyz CMzx1234计算计算 的示意图的示意图 rotxF 直角坐标系中直角坐标系中 、 、 的表达式的表达式rotxFrotyFrotzF41321dddddllll
29、ClFlFlFlFlF)()(4321zFyFzFyFzyzy2)(2yyFMFFMzzz2)(3zzFMFFMyyy2)(1zzFMFFMyyy2)(4yyFMFFMzzz第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论于是于是 同理可得同理可得故得故得概念:矢量场在概念:矢量场在M点处的旋度为一矢量,其数值为点处的旋度为一矢量,其数值为M点的环流点的环流 面密度最大值,其方向为取得环量密度最大值时面积元面密度最大值,其方向为取得环量密度最大值时面积元 的法线方向,即的法线方向,即物理意义:旋涡源密度矢量。物理意义:旋涡源密度矢量。性质:性质:(2矢量场的旋度矢量场的旋度zyzFyFlF
30、yzC)(dzFyFSlFFyzCSxdlimrot0maxrotFeFnnFeFnnrotxFzFFzxyrotyFxFFxyzrot第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论zyxzyxxyzzxyyzxFFFzyxeeeyFxFexFzFezFyFeF旋度的计算公式旋度的计算公式: :zzFFFzeeeF1FrrFFrerererFrrsinsinsin12 直角坐标系直角坐标系 圆柱坐标系圆柱坐标系 球坐标系球坐标系第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论旋度的有关公式:旋度的有关公式:矢量场的旋度矢量场的旋度的散度恒为零的散度恒为零标量场的梯度标量场的梯度的旋度
31、恒为零的旋度恒为零FfFfFf)(CfCf)(0CGFGF)(GFFGGF)(0)(F0)(u第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论SCSFlFdd3. 斯托克斯定理斯托克斯定理 斯托克斯定理是闭合曲线斯托克斯定理是闭合曲线积分与曲面积分之间的一个变积分与曲面积分之间的一个变换关系式,也在电磁理论中有换关系式,也在电磁理论中有广泛的应用。广泛的应用。曲面的剖分曲面的剖分方向相反大小方向相反大小相等结果抵消相等结果抵消 从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即流等于矢量场的
32、旋度在该闭合曲线所围的曲面的通量,即第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论4. 散度和旋度的区别散度和旋度的区别 0,0FF0.0FF0,0FF0,0FF第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论1. 矢量场的源矢量场的源散度源:是标量,产生的矢量场在包围源的封闭面上的通量散度源:是标量,产生的矢量场在包围源的封闭面上的通量 等于或正比于该封闭面内所包围的源的总和,等于或正比于该封闭面内所包围的源的总和, 源在一给定点的体密度等于或正比于矢量源在一给定点的体密度等于或正比于矢量 场在该点的散度;场在该点的散度; 旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面旋度源
33、:是矢量,产生的矢量场具有涡旋性质,穿过一曲面 的旋度源等于或正比于沿此曲面边界的闭合回的旋度源等于或正比于沿此曲面边界的闭合回 路的环量,在给定点上,这种源的面密度等于路的环量,在给定点上,这种源的面密度等于 (或正比于矢量场在该点的旋度。(或正比于矢量场在该点的旋度。1.6 无旋场与无散场无旋场与无散场第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论2. 矢量场按源的分类矢量场按源的分类(1无旋场无旋场0dClF性质:性质: ,线积分与路径无关,是保守场。,线积分与路径无关,是保守场。仅有散度源而无旋度源的矢量场,仅有散度源而无旋度源的矢量场,0F无旋场可以用标量场的梯度表示为无旋场可
34、以用标量场的梯度表示为例如:静电场例如:静电场0EEuF()0Fu 第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论(2无散场无散场 仅有旋度源而无散度源的矢量场,即仅有旋度源而无散度源的矢量场,即性质:性质:0dSSF0 F无散场可以表示为另一个矢量场的旋度无散场可以表示为另一个矢量场的旋度例如,恒定磁场例如,恒定磁场AB0BAF0)(AF第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论(3无旋、无散场无旋、无散场(源在所讨论的区域之外)(源在所讨论的区域之外)0F (4有散、有旋场有散、有旋场这样的场可分解为两部分:无旋场部分和无散场部分这样的场可分解为两部分:无旋场部分和无散场部
35、分( )( )( )( )( )lCF rF rF ru rA r 无旋场部分无旋场部分无散场部分无散场部分()0u Fu 02 u0F 第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论1.7 拉普拉斯运算与格林定理拉普拉斯运算与格林定理 1. 拉普拉斯运算拉普拉斯运算 标量拉普拉斯运算标量拉普拉斯运算2u概念:概念:2 拉普拉斯算符拉普拉斯算符2222222uuuuxyz直角坐标系直角坐标系计算公式:计算公式:22222211()uuuuz22222222111()(sin)sinsinuuuurrrrrr 圆柱坐标系圆柱坐标系球坐标系球坐标系uu2)(第第1 1章章 矢量分析矢量分析电磁场理论电磁场理论 矢量拉普拉斯运算矢量拉普拉斯运算2F概念:概念:2222xxyyzzFeFeFeF即即22()iiFF留意:对于非直角分量,留意:对于非直角分量,22()iiFF直角坐标系中:直角坐标系中:如:如:22(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025民间借款合同「样本」
- 2024年02月重庆银行财务部招考笔试历年参考题库附带答案详解
- 2025酒吧转让合同的范本
- 新建移动通讯数据终端项目立项申请报告
- 2025民间个人抵押借款合同书
- 2024年02月兴业银行潮州分行(广东)2024年社会招考信息笔试历年参考题库附带答案详解
- 新能源公交车推广应用-洞察分析
- 酮康唑软膏治疗安全性评价-洞察分析
- 网络服务行业的社区参与-洞察分析
- 2025借款合同样本2
- 10以内连加减口算练习题完整版89
- GB/T 44460-2024消费品质量分级导则卫生洁具
- 学法指导课件 2024-2025学年统编版七年级历史上册
- 弘扬科学精神激发创新活力-2024全国科普日主题宣教课件
- 大学《中国古代文学史》期末复习题库
- 个人代开税票合同协议书
- 冀教版数学五年级上册7.2 综合与实践 估算玉米收入
- DL∕T 2558-2022 循环流化床锅炉基本名词术语
- DL∕T 523-2017 化学清洗缓蚀剂应用性能评价指标及试验方法
- 抖音账号归属合同范本
- CJT 313-2009 生活垃圾采样和分析方法
评论
0/150
提交评论