下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课 题:3.2 函数函数的概念教学目的:1理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素;2理解静与动的辩证关系,激发学生学习数学的兴趣和积极性.教学重点:理解函数的概念;教学难点:函数的概念授课类型:新授课课时安排:1课时教学过程:一、复习引入:初中(传统)的函数的定义是什么?初中学过哪些函数?设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.初中已经学过:正比
2、例函数、反比例函数、一次函数、二次函数等问题1:()是函数吗?问题2:与是同一函数吗?二、讲解新课:(一)函数的有关概念设A,B是非空的数集,如果按某个确定的对应关系,使对于集合A中的任意一个,在集合B中都有唯一确定的数和它对应,那么就称为从集合A到集合B的函数,记作,xA,其中叫自变量,的取值范围A叫做函数的定义域;与的值相对应的的值叫做函数值,函数值的集合C=(CB)叫做函数y=f(x)的值域.函数符号表示“y是x的函数”,有时简记作函数.(1)函数实际上就是集合A到集合B的一个特殊对应,这里A,B为非空的数集.(2)A:定义域,原象的集合;:值域,象的集合,其中ÍB;:对应法则
3、,ÎA,ÎB(3)函数符号:是的函数,简记(二)已学函数的定义域和值域1一次函数:定义域R,值域R;2反比例函数:定义域, 值域;3二次函数:定义域R,值域:当时,;当时,.(三)函数的值:关于函数值例:=+3x+1,则f(2)=+3×2+1=11注意:1°在中表示对应法则,不同的函数其含义不一样 2°不一定是解析式,有时可能是“列表”“图象” 3°与是不同的,前者为变数,后者为常数(四)函数的三要素:对应法则、定义域A、值域 只有当这三要素完全相同时,两个函数才能称为同一函数三、例题讲解例1 已知函数=3-5x+2,求f(3),f(
4、-),f(a+1).解:f(3)=3×-5×3+2=14;f(-)=3×(-)-5×(-)+2=8+5;f(a+1)=3(a+1)-5(a+1)+2=3a+a.例2下列函数中哪个与函数是同一个函数?;解:(),,定义域不同且值域不同,不是;(),,定义域值域都相同,是同一个函数;|=,;值域不同,不是同一个函数例3下列各组中的两个函数是否为相同的函数?,; (定义域不同),; (定义域不同),. (定义域、值域都不同)例4、判断下列图象是否为函数y = f (x)的图象?四、课堂练习:下列各组中的两个函数是否为相同的函数?五、小结:本节课学习了以下内容:函数是一种特殊的对应f:AB,其中集合A,B必须是非空的数集;表示y是x的函数;函数的三要素是定义域、值域和对应法则,定义域和对应法则一经确定,值域随之确定;判断两个函数是否是同一函数,必须三要素完全一样,才是同一函数;表示在x=a时的函数值,是常量;而是x的函数,通常是变量六、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业人力资源服务外包协议细则版B版
- 2024安全电子交易SET
- 2024年企业招聘全职员工标准化劳动协议版
- 2024年度农产品销售及购买协议版B版
- 2024年人工智能语音识别技术开发合同
- 第五周国旗下讲话当国旗升起的时候
- 2024专业酒店会议接待服务协议版B版
- 2024年专项服务合同提前终止合同一
- 2024宾馆装修合同协议
- 2024工程建设项目专业劳务分包协议书版B版
- 生态系统的结构
- 爱尔兰式曲棍球
- 2023年新疆维吾尔自治区乌鲁木齐市三校生高考语文考试题库及答案解析
- 外贸职业访谈报告
- 1,3丁二烯安全技术说明书
- 羽毛球基本步法
- NY-T 4255-2022 规模化孵化场设施装备配置技术规范
- TWSJD 32-2023 胸部CT辅助诊断尘肺病技术指南
- 流行性腮腺炎 流行性腮腺炎
- 提高中医护理水平康复品管圈
- 民法典普法讲座-物权编 PPT
评论
0/150
提交评论