版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【知识精读】 把乘法公式反过来,就可以得到因式分解的公式。 主要有:平方差公式 完全平方公式 立方和、立方差公式 补充:欧拉公式: 特别地:(1)当时,有 (2)当时,欧拉公式变为两数立方和公式。 运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当的组合、变形后,方可使用公式。 用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。下面我们就来学习用公式法进行因式分解【分类解析】 1. 把分解因式的结果是( ) A. B. C. D. 分析:。 再利用平方差公式进行分解,最
2、后得到,故选择B。说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时要注意分解一定要彻底。 2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用 例:已知多项式有一个因式是,求的值。 分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出的值。 解:根据已知条件,设 则 由此可得 由(1)得 把代入(2),得 把代入(3),得 3. 在几何题中的应用。 例:已知是的三条边,且满足,试判断的形状。 分析:因为题中有,考虑到要用完全平方公式,首先要把转成。所以两边同乘以2,然后拆开搭配得完全平方公式之和为0,从而得解。 解: 为
3、等边三角形。 4. 在代数证明题中应用 例:两个连续奇数的平方差一定是8的倍数。 分析:先根据已知条件把奇数表示出来,然后进行变形和讨论。 解:设这两个连续奇数分别为(为整数) 则 由此可见,一定是8的倍数。5、中考点拨: 例1:因式分解:_。 解: 说明:因式分解时,先看有没有公因式。此题应先提取公因式,再用平方差公式分解彻底。 例2:分解因式:_。 解: 说明:先提取公因式,再用完全平方公式分解彻底。题型展示: 例1. 已知:, 求的值。 解: 原式 说明:本题属于条件求值问题,解题时没有把条件直接代入代数式求值,而是把代数式因式分解,变形后再把条件带入,从而简化计算过程。 例2. 已知,
4、 求证: 证明: 把代入上式, 可得,即或或 若,则, 若或,同理也有 说明:利用补充公式确定的值,命题得证。 例3. 若,求的值。 解: 且 又 两式相减得 所以 说明:按常规需求出的值,此路行不通。用因式分解变形已知条件,简化计算过程。【实战模拟】 1. 分解因式:(1) (2)(3)2. 已知:,求的值。3. 若是三角形的三条边,求证:4. 已知:,求的值。 5. 已知是不全相等的实数,且,试求 (1)的值;(2)的值。【试题答案】 1. (1)解:原式 说明:把看成整体,利用平方差公式分解。 (2)解:原式 (3)解:原式 2. 解: 3. 分析与解答:由于对三角形而言,需满足两边之差小于第三边,因此要证明结论就需要把问题转化为两边差小于第三边求得证明。 证明: 是三角形三边 且 即 4. 解 ,即 5. 分析与解答:(1)由因式分解可知 故需考虑值的情况,(2)所求代数式较复杂,考虑恒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合伙投资竞业书合同
- 大班数学《坐船去探险》课件
- 手足口病风趣幽默讲解
- 2024房屋修缮合同
- 小学课外活动记录20篇-20211116120635
- 2024新版家政保姆合同样本
- 2024安置房买卖合同范本(标准版)
- 2024离婚合同协议书范本范文有子女
- 2024学校食堂租赁合同
- 2024新版影视剧摄制委托贷款合同
- 小学数学北师大二年级上册七分一分与除法快乐的动物(认识倍)
- 牛人总结雅思7.5以上经验63大页超详细
- 矿山地质环境保护和土地复垦方案 编制规范指南规范
- 口腔科医疗护理技术操作规程版
- 九年级心理健康教育教案 全册
- 在例题与命题研究中实现教师专业成长
- 头颅CT精美完整课件
- 安全总监安全职责
- 附录2.1-3培养目标达成度评价报告修改
- 云南白族课件
- 消防应急预案组织结构图
评论
0/150
提交评论