



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二、RFM权重分析 对RFM各变量的指标权重问题,Hughes,Arthur认为RFM在衡量一个问题上的权重是一致的,因而并没有给予不同的划分。而Stone,Bob通过对信用卡实证分析,认为各个指标的权重并不相同,应该给予频度最高,近度次之,值度最低的权重4。 认为针对不同的行业甚至不同的公司,频度、近度、值度的权重均存在一定差异,因此需要采用科学的方法进行分析.对此,以层次分析法为支撑,结合专家咨询方式来解决指标权重的确定问题。 研究邀请了被研究的某电信企业的两位地区经理、两位市场营销人员和一位长期客户应用文献5的标度含义对RFM各指标权重进行比较分析。在分别得到五位评价者的两两比较矩阵后,
2、采取取平均的方法得到下表的评价矩阵。 评价矩阵 RFM R10.710.46 F1.4110.85 M2.181.181 上表所示的两两比较矩阵的一致性比例C。 R < 0.1,表明该判断矩阵的一致性可以接受。由上表得出RFM各指标相对权重为WF,WR,WM=0.221,0.341,0.439。其中M的权重最大,即专家们认为客户交费金额的高低是影响顾客价值高低的最主要因素。 三、客户分类 1.基于K-均值聚类法的客户分类过程应用K-均值聚类法6,以加权RFM为指标,将具有相近的顾客终身价值的客户进行分类,基本思路如下: (1)应用AHP法确定RFM各个指标的权重,并将各个指标加权。 (2
3、)将RFM各指标标准化。 (3)确定聚类的类别数量m。 (4)应用K-均值聚类法对加权后的指标进行聚类,得到m类客户。 (5)将每类客户的RFM平均值和总RFM平均值作比较,每次对比有两个结果:大于(等于)平均值和小于平均值,通过对比得到每类客户RFM的变动情况。 (6)根据每个客户类别的RFM的变动情况分析该客户类别的性质,如该客户类别是倾向于忠诚的还是倾向于背离的,然后在此基础上定义客户类型。 (7)对每类客户标准化后的各个指标取平均,将平均值加权求和,得到每类客户的顾客终身价值总得分,分析各类顾客终身价值的差别。 2.顾客类型识别分析 从某市通信公司2004年所有的电信客户记录中随机抽取
4、了1026名客户的记录进行分析,数据的描述性统计见下表 数据描述 指标最小值最大值平均值标准差 近度212860.0720.191 频度0135.981.861 值度54.431499.17704.7467216.22068 由于RFM数据的量纲各不相同,数据的取值也存在很大的差异.为了消除分布差异较大和量纲不同的影响,在对各个指标进行加权之前,需要考虑对数据进行标准化处理.由于F,M指标对顾客价值存在正相关的影响,因此其标准化调整通过进行。其中,为标准化后的值,x为原值,xs为该指标最小值,xl为该指标最大值。R对顾客价值存在负相关关系,因此其标准化调整公式为。 使用K-均值聚类法时,需要预
5、先判断其聚类的类别数。在模型中客户分类通过每个顾客类别RFM平均值与总RFM平均值相比较来决定的,而单个指标的比较只能有两种情况:大于(等于)或小于平均值,因此可能有种类别。 标准化和确定聚类类别数后,进行聚类分析,得到8类客户.将8类客户的RFM平均值与总RFM均值比较.如果单个客户类别的均值大于总均值,则给该指标一个向上的箭头:“”标记,反之则用“”,如下表所示 通过RFM分析将企业的客户群体划分成重要保持客户、重要发展客户、重要挽留客户、一般重要客户、一般客户、无价值客户等六个级别,各客户簇的客户级别如表4所示.客户分级不仅揭示了客户在级别上的差异,而且反映了客户在行为上的特性和变化倾向
6、。电信企业通过RFM分析可将现有顾客划分为不同的客户等级,针对不同等级的客户,采取不同的管理策略.但是,这种分类只是确定了客户的等级,却没有各类客户之间的一个量化的价值比较,因而对各类客户做相应的终身价值分析是非常有必要的。 3.客户终身价值比较分析。 表4将客户簇1和簇3同分为重要保持客户,将客户簇5和簇8同分为一般客户,这样难以对对这两组客户簇进行细分.此外,客户分类后,并不知道每一类客户的价值差别有多大,相对企业的重要性怎样.利用AHP法分析得到的RFM各指标权重,结合各类顾客的RFM指标,根据每一类客户的顾客终身价值得分来进行排序.标准化后的各个指标平均值如表5的,其中表示聚类后的类别
7、。,第j类客户的R,F,M各个指标标准化后的平均值,是第j类客户的RFM各项指标加权后的总得分,运算公式为。 。 其中,WR、WF、WM分别为由AHP分析得来的R、F、M指标的权重最后,根据总得分的大小来对各类客户来进行排序(见表4).排名靠前的客户相对排名靠后的客户具有更高的顾客终身价值,忠诚度更高,对于企业来说更为重要.表5显示,客户簇3总得分最高,因此簇3的客户是企业最有价值的客户,而簇6客户总得分最后,因此可以认为簇6客户的价值最低.此外,对于处于同等级的客户簇1和簇3,簇5和蹴8进行了细分.从表5中还可以看出,簇3比簇1的价值大,簇5比簇8的价值大.此外,通过比较各簇的总得分,还可以
8、比较各客户簇的价值.如簇3的价值是簇6价值的0.5693/0.3284=1.73倍。 标准化的RFM加权分类 客户CLV 类别(近度)频度值度(元)总得分排序 10.60380.51240.57270.55962 20.68040.34450.44130.46184 30.50290.70560.49550.56931 40.58150.55340.27670.43875 50.33600.51870.40790.43026 60.42610.33560.27280.32848 70.36250.48210.65740.53313 80.43590.31170.51740.42987 注:。 在进行客户分类后再对客户的类别进行顾客终身价值排序,使得企业能够量化各类
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 徐州幼儿师范高等专科学校《资产评估B》2023-2024学年第二学期期末试卷
- 新星职业技术学院《计量学与互换性基础》2023-2024学年第二学期期末试卷
- 湖南信息学院《职业定位与发展》2023-2024学年第一学期期末试卷
- 山西科技学院《电子信息专业英语》2023-2024学年第二学期期末试卷
- 南京传媒学院《生物信息软件与数学方法》2023-2024学年第二学期期末试卷
- 新疆省哈密地区2024-2025学年小升初常考易错数学检测卷含解析
- 上海海事职业技术学院《食品质量检测技术实验》2023-2024学年第一学期期末试卷
- 2024北京四中初二(下)期中物理试题及答案
- 邯郸市鸡泽县第一中学高二上学期期中考试数学(理)试题
- 保育实习工作总结(15篇)
- 2025天猫服饰春夏趋势白皮书
- 设备的运行动态管理制度(4篇)
- 借款利率协议
- 电梯维保管理体系手册
- 《阳光心态》课件
- 《110kV三相环氧树脂浇注绝缘干式电力变压器技术参数和要求》
- 2019年7月13日下午云南省公务员无领导小组讨论面试真题真题
- 人教版数学七年级下册期中考试试卷带答案
- 23J916-1 住宅排气道(一)
- 图文制作服务 投标方案(技术方案)
- 2023-2024学年福建省三明市五县联合质检高二下学期期中考试化学试题
评论
0/150
提交评论