螺栓连接钢构件地优化设计_第1页
螺栓连接钢构件地优化设计_第2页
螺栓连接钢构件地优化设计_第3页
螺栓连接钢构件地优化设计_第4页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实用标准文案螺栓连接钢构件的优化设计机械 082 冯家威 08150200231. 遗传算法遗传算法起源于对生物系统所进行的计算机模拟研究。最早是 1975年美国 Michigan 大学的 Holland 教授及其学生发展出来的,他发展了复制、交叉、变异、显性、倒立等遗传算子。 遗传算法是一种借鉴生物界自然选择和自然遗传机制的随机搜索算法。 在后来的发展中, 遗传算法在各类优化问题中得到了广泛的应用。遗传算法与传统的算法不同, 大多数古典的优化算法是基于一个单一的度量函数(评估函数) 的梯度或较高次统计, 以产生一个确定性的试验解序列 ; 遗传算法部依赖于梯度信息, 而是通过模拟自然进化过程来

2、搜索最优解, 利用某种编码技术,作用于称为染色体的数字串,模拟由这些串组成的群体的进化过程。遗传算法通过有组织的、 随机的信息交换来重新组合那些适应性好的串, 生成新的串的群体,达到优化的目的。受剪承载力和钢板强度的前提下, 降低此类构件造价。 根据多目标函数的最优化设计,比原方案降低了成本。2. 遗传算法的基本流程遗传算法以一种群体中的所有个体为对象, 并用随机化技术指导对一个被编码的参数空间进行高效搜索。其中选择、交叉和变异构成遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等五个要素组成了遗传算法的核心内容。主要步骤有:( 1)编码;( 2) 初

3、始群体的生成;( 3)适应性值评估检测;( 4)选择;( 5)交叉;( 6)变异。遗传算法中有两种运算 : ( 1)遗传运算:交叉和变异;( 2)进化运算 : 选择。一般 GA的计算流程如图 1所示。精彩文档实用标准文案开始确定表示问题解的代码: 染色体产生初始种群计算每个个体的适应度值判断每个个体的Y适应度值输出最优个体N复制交叉变异结束图13. 螺栓连接钢构件分析考虑一螺栓连接钢构件。如图2所示, 550×200× 15mm的矩形截面钢板,用四个螺栓固定于槽钢上, 在矩形钢板的右侧端部施加一水平力FH16kN 和一垂直力 FV 16kN 。螺栓直径设为 d,分别对称布置

4、于钢板和槽钢的中心线上,螺栓之间的距离设为 a和 b。精彩文档实用标准文案图2 螺栓连接钢构件3.1力学分析由几何关系知 :ra2b2由力学分析可知 :FA1700ai41700bj42b 2a 2b2aFB1700ai41700bj42b 2a 2b2aFC1700ai41700bj42222ababFD1700ai41700bj42222abab可以看出 :FmaxFB螺栓最大剪应力为 :精彩文档实用标准文案Fmax4Fmaxmax2 4d 2d螺栓的最大支承正应力 :FmaxFmaxmaxtd10d假设临界弯曲应力发生在y 轴,并通过 A 、 B 螺栓,力矩计算如下:MFmax30025

5、0aFmax 425a kN mm2截面惯性矩为:II max2 I 孔d2 A1520032 15d3b 2 15d 1072.5d 330db21212钢板临界弯曲应力为:b maxFmax72.5d 30 db2103.2螺栓成本分析设螺栓配件的价格如表1所示。其中单组总价为螺栓、螺帽各以100 个、垫片 200片为单位。采用最小二乘法得出螺栓造价函数为 :Cbolt720 d85577表 1螺栓尺寸价格一览表单位:元精彩文档实用标准文案4. 构件优化数学模型4.1设计参数令a、b、d 为螺栓结构之设计参数。其定义如下:a螺栓水平距离; b螺栓垂直距离; d螺栓直径。4.2 目标函数此优

6、化设计的目的是降低 Fmax , max ,max ,b max , Cbolt ,五种目标函数,定义适应度函数如下:F1 a,b 100 Fmax 100 FBF2a,b,d100F3a,b,d100maxmaxF4a,b,d100000 b maxF5d6000 Cbolt若同时考虑多个目标函数,定义一多重目标函数为:5F a,b, dwi Fi a,b, di 1其中 wi 为加权系数,可根据需要调整。4.3 约束条件为避免螺栓边距过小和间距过小,由钢结构设计规范知:0.75da(250/ 21.5d )0.75db(200 / 21.5d )当螺栓直径范围己知,可知a、b、d 的范围:

7、0d47.6250a1250b1005. 遗传算法精彩文档实用标准文案5.1遗传算法流程如图 1所示本算例的遗传算法流程图,首先需要设定种群大小、编码字串长度、繁殖代数、交叉概率、突变概率、加权值等参数;然后随机产生初始种群编码 5计算其每一个体编码所代表的 a、b、d值;再由 a、 b、 d值可计算出( 1)螺栓的最大承载力; (2)螺栓的最大剪应力; (3)螺栓的最大支承正应力; (4)钢板的临界弯曲应力;( 5)对应的成本适应度函数值。可由每一种群个体的适应度函数值统计出种群的 ( 1)最大适应度函数值; (2)平均适应度函数值;(3)最小适应度函数值。 接着由种群中每一个体的适应度函数

8、选出较好的编码, 考虑交叉概率和突变概率的影响, 每两个个体编码可产生两个新个体编码, 以获得更好的适应度函数值。 分别判断(1)螺栓的最大承载力; ( 2)螺栓的最大剪应力;( 3)螺栓的最大支承正应力;( 4)钢板的临界弯曲应力;( 5)成本是否均小于原始设计值,并接着判断每一设计值的 a、b值,以排除不合理的设计。5.2求解求解时设定参数如下:种群大小为40,字串长度为 30,繁殖代数为 30,交叉概率为 0.6 ,突变概率为 0.06 。当选择多重目标函数,加权值为:w15.0 、w22.0 、 w32.5 、 w41.0 、 w52.8。图 3为适应度函数轨迹图,可以看出平均值和最大

9、值都有逐渐增大的趋势,图4为考虑多重目标函数时螺栓最优位置分布图。图 3 适应度函数轨迹图精彩文档实用标准文案图 4 螺栓最优位置分布6. 结果与讨论经过遗传算法优化的部分结果统计参见表2和表 3。精彩文档实用标准文案以上算例成功地应用遗传算法进行螺栓连接钢构件的优化设计,可以看到:(1)遗传算法可以用于螺栓连接钢构件、螺栓位置及尺寸的优化设计;(2)考虑了五种目标函数,分别为螺栓的最大承载力;螺栓的最大剪应力;螺栓的最大支承正应力;钢板的临界弯曲应力;成本;(3)经过优化设计后,比原设计减少所受支承应力520%左右;(4)考虑目标函数的各变量均衡性,建议螺栓尺寸及位置为a=98.319、b=75.219 、d=15.875。参考文献1 Holland J H Adaptation in Natural and Artificial SystemM、 TheUniversity of Michigan Press,Ann Arbor ,19752 雷英杰,张善文,等、 MATLAB遗传算法工具箱及应用 M 、 西安电子

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论