缺血再灌注损伤(副本)_第1页
缺血再灌注损伤(副本)_第2页
缺血再灌注损伤(副本)_第3页
缺血再灌注损伤(副本)_第4页
缺血再灌注损伤(副本)_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、缺血-再灌注损伤机体组织器官正常代谢、功能的维持,有赖于良好的血液循环。各种原因造成的 局部组织器官的缺血,常常使组织细胞发生缺血性损伤( ischemia injury ),但在 动物试验和临床观察中也发现, 在一定条件下恢复血液再灌注后, 部分动物或患者细胞功能 代谢障碍及结构破坏不但未减轻反而加重, 因而将这种血液再灌注后缺血性损伤进一步加重 的现象称为缺血再灌注损伤( ischemia-reperfusion injury )。用低氧溶液灌注组织器官或在缺氧的条件下培养细胞一定时间后, 再恢复正常氧供应, 组织及细胞的损伤不仅未能恢复, 反而更趋严重, 这种现象称为 氧反常( oxyg

2、en paradox )。 用无钙溶液灌流大鼠心脏后, 再用含钙溶液进行灌流时, 心肌细胞的损伤反而加重, 称为 钙 反常( calcium paradox ) 。缺血引起的代谢性酸中毒是细胞功能及代谢紊乱的重要原因, 但在再灌注时迅速纠正缺血组织的酸中毒,反而会加重缺血再灌注损伤,称为 pH 值反常 ( PH paradox )。第一节 缺血再灌注损伤的原因及条件一、原因(一)、组织器官缺血后恢复血液供应如休克时微循环的疏通、冠状动脉痉挛的缓解、 心脏骤停后心脑肺复苏等。(二)、动脉搭桥术、 PTCA 、溶栓疗法等血管再通术后,心脏外科体外循环术、器 官移植及断肢再植等。二、条件并不是所有缺

3、血的组织器官在血流恢复后都会发生缺血 - 再灌注损伤, 但许多因素可 影响其发生发展和严重程度,常见的原因有:(一)、缺血时间 缺血时间的长短与再灌注损伤的发生与否相关,缺血时间过短或过 长都不易发生再灌注损伤。例如:大鼠心肌缺血 2min 以内或 20min 以上进行再灌注, 不易发生再灌注损伤;狗心肌缺血 15min 以内或 40min 以上进行再灌注,再灌注损伤 不易发生,缺血 15-20min 再灌注,心肌再灌注损伤的发生率高达 25%-50% 。(二)、侧支循环 缺血后侧支循环 容易形成者 ,因可缩短缺血时间和减轻缺血程度, 不易发生 再灌注损伤,如肺脏。(三)、需氧程度 对氧 需求

4、量高 的组织器官,如心、脑等, 易发生再灌注损伤。(四)、再灌注条件 一定程度的 低压、低温( 25 )、低 pH 、低钠、低钙 溶液灌 流,可 减轻 组织器官的再灌注损伤、使其功能迅速恢复。反之,高压、高温、高钠、高钙灌 注可诱发或加重再灌注损伤。第二节 缺血再灌注损伤的发生机制一、自由基的作用一)、自由基的概念及分类自由基( free radical )是指在外层电子轨道上具有单个不配对电子的原子、原子团 或分子的总称, 又称游离基, 如氯自由基 ( Cl·)、羟自由基 ( OH·)、甲基自由基 ( CH3·) 等。自由基的种类很多,主要包括非脂性自由基和脂性

5、自由基,前者主要指氧自由基。1 氧自由基 由氧诱发的自由基称为氧自由基,属于活性氧的一种,包括超氧阴离子 和羟自由基。过氧化氢本身不是自由基,是一种活性氧。H2O2 在 Fe2+ 或 Cu 2+ 的作用下可生成 OH . 或者通过 H2O2 的均裂产生 OH. ,这是 H2O2 造成细胞氧化应激的主要机制。单线态氧也不是自由基,而是激发态的分子氧,也属于活性氧的范畴 。2 脂性自由基 指氧自由基与多价不饱和脂肪酸作用后生成的中间代谢产物,如烷自 由基( R ·),烷氧自由基( RO ·),烷过氧自由基( ROO· )等。3 其他 如氯自由基( Cl ·)

6、、甲自由基( CH3·)和一氧化氮( NO )等。(二)、缺血 - 再灌注时氧自由基生成增多的机制1黄嘌呤氧化酶形成增多 黄嘌呤氧化酶( xanthine oxidase , XO )及其前身 为黄嘌呤脱氢酶( xanthine dehydrogenase, XD ),二者主要存在毛细血管内皮细胞 内。正常时 XD 占 90% , XO 只占 10% 。当组织缺血缺氧时,由于 ATP 生成减少, 膜泵失灵,钙离子进入细胞增多,激活钙依赖性蛋白酶,使 XD 大量转变为 XO 。同时因 缺血缺氧, ATP 依次分解为 ADP 、 AMP 、腺苷、肌苷和次黄嘌呤( hypoxanthine

7、 ), 而次黄嘌呤自身不能代谢生成黄嘌呤( xanthine ),使 XO 的底物堆积。再灌注时,缺 血组织重新得到氧, 在缺血时大量蓄积的次黄嘌呤在 XO 的作用下形成黄嘌呤, 继而又催化 黄嘌呤转化为尿酸,这两步反应都是以分子氧作为电子受体,结果产生大量的O2·- 和H2O2 , O2 · - 和 H2O2 在金属铁参与下,形成 OH ·。2中性粒细胞的呼吸爆发 中性粒细胞被激活时耗氧量显著增加,其摄入O2 的70%90% 在还原型辅酶 氧化酶( NADPH oxidase )和还原型辅酶 氧化酶 ( NADH oxidase )的催化下,接受电子形成氧自由基

8、,以杀灭病原微生物。另外组织 缺血可激活补体系统,或经细胞膜分解产生多种具有趋化活性的物质, 如 C 3 片段、白 三烯等,吸引、 激活中性粒细胞。再灌注期间组织重新获得氧供应,激活的中性粒细胞耗氧 显著增加, 产生大量氧自由基, 称为呼吸爆发 ( respiratory burst )或氧爆发 ( oxygen burst ),可损伤组织细胞。3线粒体功能受损 因缺血、缺氧使 ATP 减少,钙进入线粒体增多,使线粒体功能 受损,细胞色素氧化酶系统功能失调,进入细胞的氧经 4 电子还原成水减少,而经单电子 还原生成氧自由基增多。 而钙离子进入线粒体可使锰 超氧化物歧化酶减少, 对自由基的 清除

9、能力降低,使氧自由基生成进一步增加。4儿茶酚胺自身氧化增加 各种应激性刺激,包括缺血、缺氧,均可使交感肾上腺髓 质系统兴奋产生大量的儿茶酚胺。 儿茶酚胺一方面具有重要的代偿调节作用, 另一方面在单 胺氧化酶的作用下,通过自氧化可产生大量的自由基。(三) 、自由基对细胞的损伤作用1对膜磷脂的损伤作用 破坏膜的组分,使膜磷脂减少,膜胆固醇和胆固醇 / 磷酸 比值增加; 由于膜组分改变使膜的流动性降低; 使与膜结合的酶的巯基氧化, 导致酶活 性下降; 形成新的离子通道, 当细胞膜两层磷脂中的磷脂过氧化氢沿膜长轴以相互吸引的 方向作用时,同一层的磷脂过氧化氢聚集, 并进一步形成跨膜过氧化物, 从而形成

10、新的离子 通道。使膜脂质和蛋白质之间、 蛋白质和蛋白质之间交联或聚合, 促进膜损伤; 促进“脂 质三联体”( lipid triad )形成。膜脂质过氧化、磷脂酶活化及过量的有利脂肪酸和溶血 磷脂的“去污剂”作用(即具有破坏膜结构和功能的作用)合称“脂质三联体” 的作用。膜脂质过氧化能促进 “ 脂质三联体 ” 的形成,因为膜脂质过氧化能使细胞内Ca 2+ 含量增加,促进磷脂酶活化。磷脂酶活化水解膜磷脂导致了溶血磷脂及游离脂肪酸的聚集, 进而引起细 胞膜的损伤。此外自由基还可减少 ATP 生成,导致线粒体的功能抑制, 使细胞的能量代谢 障碍加重。2对蛋白质的损伤作用 自由基可引起蛋白质的交联、聚

11、合和肽链的断裂,也可使蛋 白质与脂质结合形成聚合物,从而使蛋白质功能丧失。3对核酸的破坏作用 自由基可作用于 DNA ,与碱基发生加成反应,而造成对碱基 的修饰,从而引起基因突变;并可从核酸戊糖中夺取氢原子而引起 DNA 链的断裂。自由 基还可引起染色体的畸变和断裂。4对细胞外基质的破坏 自由基可使细胞外基质中的胶原纤维的胶原蛋白发生交联, 使透明质酸降解,从而引起基质变得疏松,弹性下降。二、钙超载的作用各种原因引起的细胞内钙浓度明显增多并导致细胞结构损伤和功能代谢障碍的现象称 为钙超载( calcium overload )。(一) 、细胞内钙超载的发生机制1 Na+ /Ca2+ 交换异常

12、生理条件下, Na + /Ca 2+ 交换蛋白转运方向是将细胞内 Ca2+ 运出细胞,与细胞膜钙泵共同维持心肌细胞静息状态的低钙浓度。Na+ /Ca 2+ 交换蛋白以 3 个 Na + 交换 1 个 Ca 2+ 的比例对细胞内外 Na + 、 Ca2+ 进行双相转运。+ 2+ + 2+Na+ /Ca 2+ 交换蛋白的活性主要受跨膜 Na+ 浓度的调节,此外还受 Ca2+ 、 ATP 、 Mg2+ 、H+ 浓度的影响。已有大量的资料证实,Na + /Ca 2+ 交换蛋白是缺血 - 再灌注损伤和钙超载时钙离子进入细胞的主要途径。+ + 2+(1) 细胞内高 Na+ 对 Na+ /Ca 2+ 交换蛋

13、白的直接激活作用: 缺血使细胞内 ATP 含 量减少,钠泵活性降低,造成细胞内钠含量增高。 再灌注时缺血的细胞重新获得氧及营养物 质供应,细胞内高 Na + 除激活钠钾泵外,还迅速激活 Na+ /Ca 2+ 交换蛋白,以加速 Na + 向细胞外转运,同时将大量 Ca2+ 转入细胞内,造成细胞内 Ca 2+ 超载。(2) 细胞内高 H+ 对 Na+ /Ca 2+ 交换蛋白的间接激活作用:质膜 Na+ /H+ 交换蛋 白主要受细胞内 H+ 浓度的变化,以 1:1 的比例将细胞内的 H+ 排出胞外,而将 Na+ 摄 入细胞,这是维持细胞内 PH 稳定的重要机制。缺血缺氧期,由于细胞的无氧代谢增强使

14、H+ 生成增加,组织间液和细胞内液 PH 明显降低。再灌注使组织间液 H+ 浓度迅速下降, 而细胞内 H+ 浓度很高,形成跨膜 H+ 浓度梯度。细胞膜两侧 H+ 浓度差可激活心肌 Na + /H + 交换蛋白,促进细胞内 H+ 排出,而使细胞外 Na+ 内流。如果内流的 Na + 不能被 钠泵充分排出,细胞内高 Na + 可继发性激活 Na + /Ca 2+ 交换蛋白,促进 Ca 2+ 内流, 加重细胞钙超载。+ 2+(3) 蛋白激酶 C ( PKC )活化对 Na + /Ca 2+ 交换蛋白的间接激活作用:生理条件 下,心功能主要受 肾上腺素能受体调节, 1 肾上腺素能受体的调节作用较小。但

15、缺血 - 再灌注损伤时,内源性儿茶酚胺释放增加, 1 肾上腺素能受体的调节相对起重要作用。 1 肾上腺素能受体激活 G 蛋白 - 磷脂酶 C ( PLC )介导的细胞信号转导通路,促进 磷脂酰肌醇分解,生成三磷酸肌醇( IP3 )和甘油二脂( DG ),促进细胞内 Ca 2+ 的 释放; DG 经激活 PKC 促进 Na + /H + 交换,进而促进 Na + /Ca 2+ 交换,使胞浆 Ca 2+ 浓度增加。2生物膜损伤(1) 细胞膜损伤:生理情况下,细胞膜外板和糖被膜( glycocalyx )由 Ca 2+ 紧密 联结在一起。当 Ca 2+ 反常时,可使细胞糖被膜受损;当细胞缺血缺氧时可

16、导致细胞 膜受损、破裂;心肌缺血缺氧时,一方面使交感 - 肾上腺髓质系统兴奋,血中儿茶酚胺 含量增加。儿茶酚胺能产生氧自由基,从而损伤细胞膜;另一方面,心肌缺血部位 肾上腺素能受体上调, 肾上腺素能受体兴奋可导致Ca 2+ 内流增加。(2) 线粒体及肌浆网膜损伤: 自由基增加和膜磷脂分解增强可造成肌浆网膜损伤, 钙 泵功能抑制使肌浆网摄 Ca 2+ 减少,胞浆 Ca2+ 浓度升高。线粒体损伤抑制氧化磷酸化过 程,使 ATP 生成减少,细胞膜和肌浆网膜钙泵能量供应不足,促进钙超载的发生。(二) 、钙超载引起再灌注损伤的机制1 线粒体功能障碍 再灌注后,胞浆中 Ca2+ 浓度大量增加,可刺激线粒体

17、和肌浆网的 钙泵摄取钙,使胞浆中的 Ca 2+ 向线粒体和肌浆网中转移 。这在再灌注早期具有一定的代 偿意义,可减少胞浆中钙超载的程度。但细胞内钙增多使肌浆网及线粒体消耗大量 ATP ; 2+同时,线粒体内的 Ca 2+ 离子与含磷酸根的化合物反应形成磷酸钙,干扰线粒体氧化磷酸 化,使能量代谢障碍, ATP 生成减少。二者均使细胞能量供应不足。2 激活磷脂酶 细胞内 Ca 2+ 超载可激活多种磷脂酶,促进膜磷脂的分解,使细胞膜 及细胞器膜均受到损伤。 此外,膜磷脂的降解产物花生四烯酸、溶血磷脂等增多, 增加了膜 的通透性,进一步加重膜的功能紊乱。+ 2+3通过 Na /Ca 交换蛋白形成一过性

18、内向离子流 ( transicent inward current)在心肌动作电位后形成迟后除极(delayed after depolarization)而引起心律失常。4 促进自由基形成 细胞内钙超载使钙依赖性蛋白水解酶活性增高,促进黄嘌呤脱氢 酶转变为黄嘌呤氧化酶,使自由基生成增多,损害组织细胞。5 使肌原纤维挛缩、 断裂, 生物膜机械损伤, 细胞骨架破坏 其发生机制为: 缺血 - 再灌注使缺血细胞重新获得能量供应,在胞浆存在高浓度Ca2+ 的条件下,肌原纤维发生过度收缩。这种肌纤维过度甚至不可逆性缩短可损伤细胞骨架结构 ,引起心肌纤维断裂; 再灌注使缺血期堆积的 H+ 迅速移出,减轻或

19、消除了 H+ 对心肌收缩的抑制作用。三、白细胞的作用(一) 、白细胞增加的机制1 趋化物质的作用 组织缺血使细胞膜受损,再灌注损伤可使膜磷脂降解,花生四烯 酸代谢产物增多, 其中有些物质, 如白三烯具有很强趋化作用, 吸引大量的白细胞进入组织 或吸附于血管内皮。 白细胞与血管内皮细胞粘附后进一步被激活, 本身也释放具有趋化作用 的炎症介质,如白三稀 B 4 ( LB 4 ),使微循环中白细胞进一步增多。2 细胞粘附分子的作用 粘附分子( adhesion molecule)是指由细胞合成的、可促进细胞与细胞之间、 细胞与细胞外基质之间粘附的一大类分子的总称。 实验发现, 在缺血 组织内已有白细

20、胞聚集, 其数量可随缺血时间的延长而增加; 再灌注早期 (数秒 - 数分钟) , 血管内皮细胞内原先储存的一些蛋白质前体被激活,释放多种细胞粘附分子。(二) 、白细胞对组织损伤作用的机制1 对血液流变学的作用 实验证实, 在缺血和再灌注早期白细胞即粘附于内皮细胞上, 随后有大量血小板沉积和红细胞缗钱状聚集, 造成毛细血管阻塞。 实验表明, 红细胞解聚远 较白细胞与内皮细胞粘附的分离容易, 提示白细胞粘附是微血管阻塞的主要原因。 通过测量 缺血和再灌注心肌的血流量, 发现呈进行性下降趋势, 特别在心内膜层降低更明显。 由于血 管的阻塞, 平均氧弥散的距离增加, 局部氧分压可降低到零, 一组毛细血

21、管网阻塞,使所支 配的细胞处于低氧环境中, 造成细胞功能代谢的障碍。 此外, 缺血再灌注组织可见到 无复流 现象( no-reflow phenomenon ),是指缺血再灌注时,部分或全部缺血组织不出现血液灌 流的现象。影响无复流现象的原因很多,包括缺血时间的长短、缺血程度、梗死灶大小等。无复 流现象的可能机制为:血管障碍及中性粒细胞栓塞;血小板、 血栓堵塞微血管;细胞 肿胀挤压微血管; 血液粘滞性变化等。 其中中性粒细胞引起的毛细血管 栓塞 可能是主要原 因,因为用去中性粒细胞的血液灌流,能明显减轻无复流现象。2 产生自由基 白细胞能产生多种自由基,如活性氧,卤氧化合物等,激发细胞膜的 脂

22、质过氧化,并损伤细胞内的重要成分。3 颗粒成分( granule constitutes )释出 在缺血损伤区,从白细胞释放酶性颗粒成分 能导致细胞组织进一步损伤。 中性粒细胞可释放出 20 多种酶, 其中 3 种引起组织损伤最 大。一种是含丝氨酸蛋白酶的弹性硬蛋白酶( elastase ),另外两种是含金属的蛋白酶 即胶原酶( collagenase )和明胶酶( gelatinase )。弹性硬蛋白酶几乎能降解细胞外 液基质中的所有成分,裂解免疫蛋白、凝血因子, 并攻击完整的未受损的细胞,激活的胶原 酶和明胶酶也能降解各种类型的胶原,导致细胞的损伤。4 其他作用 白细胞一旦激活,也可激活磷

23、脂酶A2 ,游离出花生四烯酸,导致瀑布效应,产生许多血管活性物质,如白三烯,血小板激活因子等,使血管收缩,通透性增加, 促进白细胞对血管壁的粘附等。四、高能磷酸化合物缺乏一些研究表明,心肌短时间缺血后,发生的损伤是可逆的,如果此时得到血液再灌, 细胞不至死亡,但心肌收缩功能却不能很快恢复。说明心肌能量代谢障碍。通过实验进一步观察发现,再灌注时心肌的高能磷酸化合物明显缺乏。说明缺血及再 灌注损伤的心肌有氧代谢障碍,高能磷酸化合物缺乏。影响了心功能的恢复。1 再灌注时高能磷酸化合物缺乏和总腺苷酸水平减少的原因:(1) 线粒体受损 : 因缺血缺氧,线粒体产生氧自由基增多, 再灌注时组织产生自由基 也

24、增多。二者均使线粒体膜发生脂质过氧化,使线粒体结构和功能受损, 表现为利用氧能 力障碍,同时合成 ATP 减少。(2)ATP 的前身物质减少 : 包括腺苷,肌苷,次黄嘌呤等,在再灌注时被血流冲洗出 去,使总腺苷酸水平下降。 因此如在再灌注液中补充肌苷或谷氨酸等可促进 ATP 的合成及 心功能的恢复。五、内皮素的作用ET 促进心脏缺血再灌注损伤的机制与心肌膜上 ET 受体上调、促进胞内钙超载、PMN 聚集、粘附、氧自由基释放及内皮细胞自稳态失衡有关。心肌缺血再灌注时,可引起 心肌细胞膜上 ET 结合点密度增加。 ET 可通过蛋白 -IP 3 途径导致胞内 Ca2+ 浓度的 增高,胞内 Ca 2+

25、 浓度增高,既可导致冠脉强烈收缩,又能激活磷脂酶,使膜磷脂降解, 损伤细胞膜。 ET 具有明显地促进 PMN 聚集和粘附的作用,其机制在于 ET-1 能促进 PMN 表面粘附分子 CD11/CD18 的表达,这种作用可被抗 CD18 抗体 ISI/18 阻断 六、血管紧张素( angiotension )的作用Ang 促进交感神经末梢释放儿茶酚胺、收缩血管、刺激醛固酮分泌、促进心肌血管 平滑肌增殖和肥厚等生理作用,主要由AT 1 介导。 Ang 与再灌注损伤关系密切。主要表现在再灌注过程中 Ang 水平增高, AT 1 受体上调,以及应用 ACE 抑制剂或 Ang 受体拮抗剂具有抗再灌注损伤的

26、作用。第三节 缺血 - 再灌注损伤时机体的功能及代谢变化一、心肌缺血再灌注损伤的变化(一) 、心肌缺血再灌注损伤的发病机制具体机制为激活心肌兴奋收缩耦联过程, 导致肌原纤维挛缩, 不但加速能量的消耗, 其挛缩力可使肌纤维膜破裂; Ca2+ 能以磷酸钙的形式沉积于线粒体,损伤线粒体功能, 使 ATP 产生障碍;激活钙依赖性的酶,进一步损伤细胞膜;Ca2+ 能促进血小板粘附、聚集以及释放等反应,促进血栓的形成。(二)、再灌注对心肌电活动的影响 心肌细胞急性缺血时的电生理改变为静息电位降低,动作电位上升的速度变慢,时值缩短, 兴奋性和传导性均降低, 一些快反应细胞转变为慢反应细胞。 在心电图上表现为

27、缺血 心肌对应部位 ST 段抬高, R 波振幅增加。 再灌注使缺血中心区 R 波振幅迅速降低, ST 段高度恢复到原水平, Q 波很快出现,从而出现再灌注性心律失常。心肌缺血后对激动的 传导时间延长, 自律性增强, 都为心律失常创造了条件。 再灌注后心脏由窦性心律转变为心 室颤动, 或出现室性心动过速转变为室颤, 这是由规律、 迅速、 反复的室性异位活动的结果。 动物实验发现,缺血再灌注性心律失常失常的发生率可达 50%70% ,临床上解除冠状 动脉痉挛及溶栓疗法后缺血再灌注性心律失常的发生率也高达 50%70% 。(三)、再灌注对心功能的影响短期缺血后再灌注心功能可得到恢复, 若阻断冠脉 1

28、 小时后再灌注, 血流动力学常常 进一步恶化, 早在 70 年代就发现, 夹闭狗冠状动脉 15min 并不引起心肌坏死, 但缺血 - 再灌注后心肌收缩功能抑制可持续 12h 。这种短期缺血早期恢复灌注时, 心肌收缩功能不 能迅速恢复,在较长一段时间内(数天到数周),心肌收缩功能低下,甚至处于无功能状态 ( nonfunction state ),称为心肌顿抑( myocardial stunning ) 。心肌顿抑是缺血 - 再灌注 损伤的表现形式之一,其发病机制与自由基爆发性生成和钙超载有关。(四)、再灌注对心肌代谢的影响 短时间的缺血再灌注,可使心肌代谢迅速改善并恢复正常,但缺血时间较长后

29、再灌注 反而使心肌代谢障碍更为严重, ATP/ADP 的比值进一步降低, ATP 和 CP 含量迅速下 降,氧化磷酸化障碍,线粒体不再对 ADP 反应。这是因为再灌注时自由基和钙超载等对 线粒体的损伤使心肌能量合成减少;加之再灌注血流的冲洗, ADP 、 AMP 等物质含量 比缺血期降低,造成合成高能磷酸化合物的底物不足。(五)、再灌注对心肌超微结构的影响缺血 - 再灌注损伤时,超微结构可见细胞水肿,细胞膜损伤加重,细胞挛缩加重,某 些线粒体嵴破裂消失,线粒体内 Ca 2+ 大量沉积,形成致密颗粒,肌原纤维断裂,节段性 溶解和收缩带形成。再灌注也可使毛细血管内皮细胞肿胀加重, 胞浆形成突起物伸

30、向管腔, 内质网扩张成大小不 一的空泡,引起管腔变窄,甚至阻塞,同时血小板、白细胞聚集、聚集、阻塞在微循环中。 上述变化使心肌恢复灌流后,可使心肌得不到血液供应,出现无复流现象。二、脑缺血再灌注损伤(一)、对代谢的影响+ 2+1 代谢障碍 缺血时细胞内 ATP 、 CP 产生严重减少,影响 Na + 泵、 Ca2+ 泵的 功能。 由于钠钾泵功能降低,膜离子梯度不能维持,细胞外钾离子浓度升高,而细胞内钠水 潴留。再灌注时,氧自由基产生加重了膜损伤,使细胞肿胀,同时细胞内细胞器也肿胀,影 响各种细胞器功能的发挥。 由于毛细血管管外水肿压迫, 管内细胞的肿胀的堵塞作用, 影响 了脑微循环,加重脑损伤

31、。2 细胞内酸中毒 缺血时糖酵解增强产生大量乳酸,造成更严重的组织损伤。3 钙稳态破坏 钙超载能触发下列的反应:突触前兴奋性氨基:谷氨酸及 N- 甲基 -D- 天门冬氨酸( gluthamate and N-methyl-D-aspartate )释放,引起受体依赖性 通道中 N 型钙通道释放。在某些神经元上存在 N- 甲基 -D- 天门冬氨酸( NMDA )受 体,在有毒的兴奋性氨基酸的作用下,受体兴奋可引起受体依赖的Ca 2+ 内流。激活磷脂酶 A 2 ,引起膜磷脂降解, 游离的花生四烯酸增多, 再灌注后, 花生四烯酸进一步代谢, 生成前列腺素类、 白三烯类和血小板激活因子, 并在氧自由基的作用下, 启动膜脂质过氧化, 形成脂性自由基, 并进一步促进钙受体通道兴奋性氨基酸的释放。 激活蛋白酶, 核酸内切 酶,导致神经元降解,微管解聚,细胞骨架破坏。 使突出前膜和突出后膜蛋白质过度磷酸 化,使线粒体滞留钙作用降低, 神经末梢去极化, 谷氨酸释放增多, 中性蛋白酶激活, Ca 2+ 大量内流,线粒体 Ca 2+ 浓度缓慢增高,最终导致神经元迟发性死亡。4 铁依赖性脂质过氧化 在脑缺血期,内皮细胞及其他细胞内铁池破裂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论