2011年圆锥曲线_第1页
2011年圆锥曲线_第2页
2011年圆锥曲线_第3页
2011年圆锥曲线_第4页
2011年圆锥曲线_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 2011年高考试题解析数学(文科)分项版10 圆锥曲线一、选择题:1. (2011年高考山东卷文科9)设M(,)为抛物线C:上一点,F为抛物线C的焦点,以F为圆心、为半径的圆和抛物线C的准线相交,则的取值范围是 (A)(0,2) (B)0,2 (C)(2,+) (D)2,+)【答案】C6.(2011年高考浙江卷文科9)已知椭圆(ab0)与双曲线有公共的焦点,的一条渐近线与的长度为直径的圆相交于两点.若恰好将线段三等分,则(A) (B) (C) (D) 【答案】 C【解析】:由恰好将线段AB三等分得由又,故选C.7. (2011年高考天津卷文科6)已知双曲线的左顶点与抛物线的焦点的距离为4,且

2、双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为A. B. C. D. 【答案】B【解析】由题意知,抛物线的准线方程为,所以,又,所以,又因为双曲线的一条渐近线过点(-2,-1),所以双曲线的渐近线方程为,即,所以,即,选B.8. (2011年高考福建卷文科11)设圆锥曲线I的两个焦点分别为F1,F2,若曲线I上存在点P满足:= 4:3:2,则曲线I的离心率等于A. B. C. D. 【答案】A【解析】由:= 4:3:2,可设,若圆锥曲线为椭圆,则,;若圆锥曲线为双曲线,则,故选A.9. (2011年高考四川卷文科11)在抛物线y=x2+ax-5(a0)上取横坐标为

3、x1=-4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆相切,则抛物线的顶点坐标是( )(A) (-2,-9) (B)(0,-5) (C) (2,-9) (D)(1,6)10. (2011年高考陕西卷文科2)设抛物线的顶点在原点,准线方程为,则抛物线的方程是 (A) (B) (C) (D) 【答案】C【解析】:设抛物线方程为,则准线方程为于是故选C11(2011年高考湖南卷文科6)设双曲线的渐近线方程为则的值为( )A4 B3 C2 D1答案:C解析:由双曲线方程可知渐近线方程为,故可知。12(2011年高考湖北卷文科4)将两个顶点在抛物线上,另一个顶点是此抛

4、物线焦点的正三角形个数记为n,则A.B.C.D.答案:C解析:设满足条件的正三角形的三顶点为A、B、F,依题意可知,A、B必关于x轴对称,故设 ,则,则,故由抛物线定义可得,则由,解得,由判别式计算得>0,故有两个正三角形,可知选C.13.(2011年高考辽宁卷文科7)已知 F 是抛物线 的焦点,AB是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为 (A) (B)1 (C) (D) 答案: C解析:设A、B的横坐标分别是m、n,由抛物线定义,得=m+n+= m+n+=3,故m+n=,故线段AB的中点到y轴的距离为。二、填空题:14. (2011年高考山东卷文科1

5、5)已知双曲线和椭圆有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .16. (2011年高考四川卷文科14)双曲线上一点P到双曲线右焦点的距离是4,那么点P到左准线的距离是 .答案:16解析:由双曲线第一定义,|PF1|-|PF2|=±16,因|PF2|=4,故|PF1|=20,(|PF1|=-12舍去),设P到左准线的距离是d,由第二定义,得,解得.17.(2011年高考全国卷文科16)已知F1、F2分别为双曲线C: - =1的左、右焦点,点AC,点M的坐标为(2,0),AM为F1AF2的平分线则|AF2| = .已知F1、F2分别为双曲线C: - =1的左、

6、右焦点,点AC,点M的坐标为(2,0),AM为F1AF2的平分线则|AF2| = .【答案】6【解析】:,由角平分线的性质得又 18(2011年高考重庆卷文科9)设双曲线的左准线与两条渐近线交于 两点,左焦点在以为直径的圆内,则该双曲线的离心率的取值范围为A B C D,【答案】B三、解答题:18. (2011年高考山东卷22)(本小题满分14分)在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.()求的最小值;()若,(i)求证:直线过定点;(ii)试问点,能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.【

7、解析】()由题意:设直线,由消y得:,设A、B,AB的中点E,则由韦达定理得: =,即,所以中点E的坐标为E,因为O、E、D三点在同一直线上,所以,即,解得,所以=,当且仅当时取等号,即的最小值为2.()(i)证明:由题意知:n>0,因为直线OD的方程为,所以由得交点G的纵坐标为,又因为,且,所以,又由()知: ,所以解得,所以直线的方程为,即有,令得,y=0,与实数k无关,所以直线过定点(-1,0).(ii)假设点,关于轴对称,则有的外接圆的圆心在x轴上,又在线段AB的中垂线上,由(i)知点G(,所以点B(,又因为直线过定点(-1,0),所以直线的斜率为,又因为,所以解得或6,又因为,

8、所以舍去,即,此时k=1,m=1,E,AB的中垂线为2x+2y+1=0,圆心坐标为,G(,圆半径为,圆的方程为.综上所述, 点,关于轴对称,此时的外接圆的方程为.19. (2011年高考江西卷文科19) (本小题满分12分)已知过抛物线的焦点,斜率为的直线交抛物线于()两点,且(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值【解析】(1)直线AB的方程是 所以:,由抛物线定义得:,所以p=4,抛物线方程为:(2) 由p=4,化简得,从而,从而A:(1,),B(4,)设=,又,即8(4),即,解得.21(2011年高考湖南卷文科21)已知平面内一动点到点F(1,0)的距离与点

9、到轴的距离的等等于1(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值解析:(I)设动点的坐标为,由题意为化简得当、所以动点P的轨迹C的方程为(II)由题意知,直线的斜率存在且不为0,设为,则的方程为由,得设则是上述方程的两个实根,于是 因为,所以的斜率为设则同理可得故当且仅当即时,取最小值1622. (2011年高考陕西卷文科17)(本小题满分12分)设椭圆C: 过点(0,4),离心率为()求C的方程;()求过点(3,0)且斜率为的直线被C所截线段的中点坐标解:()将(0,4)代入C的方程得 b=4又 得即, 

10、; C的方程为( )过点且斜率为的直线方程为,设直线与的交点为,将直线方程代入的方程,得,即,解得, AB的中点坐标, ,即中点为。注:用韦达定理正确求得结果,同样给分。24.(2011年高考全国卷文科22) (本小题满分12分)(注意:在试题卷上作答无效)已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交与A、B两点,点P满足()证明:点P在C上;()设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.【解析】()证明:由,由设,故点P在C上()法一:点P,P关于点O的对称点为Q,即,同理即, A、P、B、Q四点在同一圆上.法二:由已知有

11、则的中垂线为:设、的中点为则的中垂线为:则的中垂线与的中垂线的交点为到直线的距离为即、四点在同一圆上。27. (2011年高考天津卷文科18)(本小题满分13分)设椭圆的左、右焦点分别为,点满足.()求椭圆的离心率;()设直线与椭圆相交于A,B两点.若直线与圆相交于M,N两点,且|MN|=|AB|,求椭圆的方程.【解析】()设,(),因为,所以,整理得,即,解得.()由()知,可得椭圆方程为,直线的方程为,A,B两点坐标满足方程组,消y整理得,解得或,所以A,B两点坐标为,所以由两点间距离公式得|AB|=,于是|MN|=|AB|=,圆心到直线的距离,因为,所以,解得,所以椭圆方程为.NMPAx

12、yBC28. (2011年高考江苏卷18)如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)当直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PAPB【解析】(1)因为、,所以MN的中点坐标为(-1,),又因为直线PA平分线段MN,所以k的值为(2)因为k=2,所以直线AP的方程为,由得交点P()、A(),因为PCx轴,所以C(),所以直线AC的斜率为1,直线AB的方程为,所以点P到直线AB的距离d

13、=.(3)法一:由题意设,A、C、B三点共线,又因为点P、B在椭圆上,两式相减得:法二:设,A、C、B三点共线,又因为点A、B在椭圆上,两式相减得:,.29. (2011年高考辽宁卷文科21) (本小题满分12分)如图,已知椭圆C1的中心在圆点O,长轴左、右端点M、N在x轴上,椭圆C1的短轴为MN,且C1,C2的离心率都为e,直线lMN,l与C1交于两点,与C1交于两点,这四点按纵坐标从大到小依次为A、B、C、D.(I)设e=,求|BC|与|AD|的比值;(II)当e变化时,是否存在直线l,使得BO/AN,并说明理由.解析:(I)因为C1,C2的离心率相同,故依题意可设。设直线分别和C1,C2

14、联立,求得。当时,分别用yA,yB表示A、B的纵坐标,可知|BC|:AD|= (II)t=0时的l不符合题意,t0时,BO/AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即,解得。因为,又,所以,解得。所以当时,不存在直线l,使得BO/AN;当时,存在直线l使得BO/AN。30.(2011年高考安徽卷文科17)(本小题满分13分)设直线(I)证明与相交;(II)证明与的交点在椭圆上.(方法)与的交点p的(x,y)满足:,从而,代入得,整理得所以与的交点p的(x,y)在椭圆上【解题指导】:两直线的位置关系判定方法:(1)(2)(3)证明两数不等可采用反证法的思路。点在线上的判断与证明只要将点的坐标代入曲线方程判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论