弯曲和分叉渠道溃坝波运动特性-数值预报_第1页
弯曲和分叉渠道溃坝波运动特性-数值预报_第2页
弯曲和分叉渠道溃坝波运动特性-数值预报_第3页
弯曲和分叉渠道溃坝波运动特性-数值预报_第4页
弯曲和分叉渠道溃坝波运动特性-数值预报_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、弯曲和分叉渠道溃坝波运动特性-数值预报            摘  要  基于TVD格式的有限差分算法思想,考虑节点与单元的对应关系,对任意四边形单元各边的通量采用优选限量函数的组合型TVD格式进行插值,在时间上采用两步Runge-Kutta法离散,建立了守恒型浅水方程有限体积的高分辨率计算模型。首次针对180°强弯曲河道、90°双支以及45°三支分叉渠道,数值预报了溃坝波的演进过程,揭示了溃坝波在弯曲河道中内外两岸速度与水位

2、变化,在分叉河道中自动进行流量与动量再分配,在叉点角区形成旋涡、壅高等复杂运动特征,同时反映了湿底与干底的影响。关键词  浅水方程,有限体积,TVD格式,弯曲渠道,分叉渠道,溃坝波1前言    许多水利和环境工程问题,都需要进行浅水流动分析,数值计算逐渐成为分析的重要手段。虽然二维浅水流动一般问题的计算比较成熟,但对于有间断、带自由面、含复杂边界等复杂浅水问题的研究,由于对数值计算方法要求较高仍处于发展之中。对溃坝问题的研究,一直是引人关注的重要课题,具有重要的学术价值和工程应用背景。过去对溃坝问题的研究,以差分方法为主,所用的格式有特征线法、显式和隐式

3、差分法以及最近占据重要地位的近似黎曼解法等,TVD(Total Variation Diminishing)格式1在该类问题研究中也逐渐发挥其独特的作用, 如用来计算一维溃坝波的传播、反射2"5和二维溃坝波的传播、反射与绕射6"9。对于复杂边界,通常采用坐标变换,将不规则计算域转换到规则计算域,但同时方程也复杂化。近年来,在有限体积离散基础上的近似黎曼解法,用于计算浅水流动(包括溃坝波)问题,取得了良好效果10"13。但另一类高分辨率格式TVD格式用在有限体积方法中尚不多见。传统TVD格式形式多样,数值性能也有一定差异,有的耗散性偏大,有的压制性过强,主要在于所选

4、用的限量函数的不同。作者在溃坝波计算的比较研究中,发现有的限量函数在计算干底情况下的溃坝波时会出现坝址处的非物理扭曲现象,通过深入研究,得到了优选的限量函数,并建立了求解浅水方程带最优限量函数的组合型TVD格式9。与实验结果进行比较,进一步表明采用浅水方程和组合型TVD格式能有效地描述溃坝波的运动特征6。在文献8    2007-04-20        中提出了卫星单元概念和主单元及其卫星单元间的拓扑关系,把节点和单元对应起来,建立了浅水方程在任意四边形单元上的有限体积TV

5、D格式,可以直接在任意控制单元上进行求解。本文拟进一步用于解决具有复杂边界,例如弯曲与分叉渠道溃坝波传播的计算问题。关于弯曲河道,国外有一些实验结果14,而分叉河道中溃坝波的预报,国内外至今未见报道。本文算法的成功实现,可以较好地解决天然河道溃坝波的计算问题,这将有助于对实际河道溃坝波运动特征的进一步认识和为防灾减灾决策提供可靠依据。2        控制方程描述溃坝流动的控制方程一般是通过作静水压力、小底坡和长波假定,对Navier-Stokes方程进行深度平均而得到的浅水方程,将其写成守恒形式为  &

6、#160;     分别是x、y方向的单宽流量、底坡和摩阻坡降。摩阻坡降 可由曼宁公式确定           ,边界                        (3)式中A为区域 的弧长,n为边界 由四条线段组成,上式左端第

7、2项可以写成                为边长,                           (5)其中       

8、                   (6)    利用F(U)和    2007-04-20        G(U)的旋转不变性,引入旋转变换矩阵 可改写(5)式为        

9、;                  ( 8)    记(7)式右端为                              

10、      (9)采用两步Runge-Kutta法离散上式,时间精度也可以达到二阶,得到                     (11)式中                

11、60;  (12)其中    2007-04-20         为二单元特征变量差分的算术平均,              (13)其中0.138正是计算溃坝波时,介于缓流(亚临界流)与急流(超临界流)之间的临界水深比。当初始下游与上游的水深比较大(湿底)时,宜采用单参数限量函数 以避免在坝址附近的非物理扭曲现象。 

12、0;       (16)                                        (18)其中 .域外虚拟单元:&#

13、160;     (各边)表示其法向通量和切线通量为零。其中下标“1”、“2”表示域外单元,“b”表示邻近边界的内部单元(如图1所示)。不计域外单元的几何尺寸和形状,因为计算中不需要对其量化。4     Yang J Y, Hsu C A and Chang S H. Computations of free surface flows, Part 1: 1D dam-break flow. J. Hydr. Res. , 1993, 31(1): 19-34.5     王

14、嘉松, 倪汉根, 金生, 李鉴初,用TVD显隐格式模拟溃坝波的演进与反射,水利学报,1998,(5):7-11.6     王嘉松, 倪汉根, 金生,二维溃坝波传播和绕流特性的高精度数值模拟,水利学报,1998    2007-04-20        ,(10):1-6.7     王嘉松, 倪汉根, 金生,二维溃坝问题的高分辨率数值模拟,上海交通大学学报,1999,(10):12131216.

15、8     Wang Jia-song and Ni Han-gen. A high resolution finite-volume method for solving the shallow water equations. J. Hydrodynamics, Ser. B., 2000, (1): 35-41.9     Wang Jia-song, Ni Han-gen and He You-sheng. Finite-difference TVD scheme for computation of da

16、m-break problems. J. Hydr. Eng., ASCE, 2000, 126(4): 253-262.10  谭维炎, 胡四一,二维浅水流动的一种普适的高性能格式有限体积Osher格式,水科学进展,1991,(3):154-161.11  Zhao D H, Shen H W, Lai J S and Tabios G Q. Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling, J. Hydr. Eng., ASCE, 1996, 122: 692-702.12&

17、#160; Anastansiou K and Chan C T. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. Inter. J. Numer. Meth. Fluids, 1997, 24: 1225-1245.13  Mingham C G and Causon D M. High-resolution finite-volume method for shallow water flows. J. Hydr

18、. Eng., ASCE, 1998, 124(6): 605"614.14  Bell S W, Elliot R C and Chaudhry M A. Experimental results of two-dimensional dam-break flows. J. Hydr. Res., 1992, 30(2): 225-252.Numerical simulation of dam-break flows in bend and furcated channels    Abstract  A high-resolution finite-v

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论