有关一次函数应用题_第1页
有关一次函数应用题_第2页
有关一次函数应用题_第3页
有关一次函数应用题_第4页
有关一次函数应用题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一次函数应用题一、图形信息题例1、 如图,表示神风摩托厂一天的销售收入与摩托车销售量之间的关系;表示摩托厂一天的销售成本与销售量之间的关系。(1)写出销售收入与销售量之间的函数关系式;(2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售量为多少辆时,销售收入等于销售成本;(4)一天的销售量超过多少辆时,工厂才能获利?分析:由图象可知与x成正比例关系,是x的一次函数。再由经过(4,4),经过(0,2),(4,4),可求得两函数的解析式。解(1)y=x。(2)设y=kx+b,直线过(0,2)、(4,4)两点,y=kx+2,又4=4k+2,k=,y=x+2。(3)由图象知,当x=4时,销售

2、收入等于销售成本。(4)由图象知,当x4时,工厂才能获利。例2、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)的关系如图12所示。请根据图象所提供的信息解答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 ,从点燃到燃尽所用的时间分别是 ;分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;当x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?解:30cm,25cm;2h,2.5h; 设甲蜡烛燃烧时y与x之间的函数关系式为,由图可知,函数的图象过点(2,0),(0,30), 解得 设乙蜡烛燃烧时y与x之间的函数关系式为,由图可知,函数的图象过点(2.5,0),(0,

3、25), 解得 由题意得,解得 当甲、乙两根蜡烛燃烧1h的时候高度相等。例3、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图11所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了_h开挖6h62Ox(h)y(m)3060乙甲50图象与信息图11时甲队比乙队多挖了_m;(2)请你求出:甲队在0x6的时段内,y与x之间的函 数关系式;乙队在2x6的时段内,y与x之间的函数关系式;(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?解:(1)2, 10(2)设甲队在0x6的时段内y与x之间的函数关系式y=k1x,由图可知,

4、函数图象过点(6,60),6 k1=60,解得k1=10,y =10x设乙队在2x6的时段内y与x之间的函数关系式为,由图可知,函数图象过点(2,30)、(6,50),   解得 y =5x+20(3)由题意,得10x=5x+20,解得x=4(h)当x为4h时,甲、乙两队所挖的河渠长度相等例4、在抗击“非典”中,某医药研究所开发了一种预防“非典”的药品.经试验这种药品的效果得知:当成人按规定剂量服用该药后1小时时,血液中含药量最高,达到每毫升5微克,接着逐步衰减,至8小时时血液中含药量为每毫升1.5微克.每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.在成人按规

5、定剂量服药后:(1)分别求出x1,x1时y与x之间的函数关系式;(2)如果每毫升血液中含药量为2微克或2微克以上,对预防“非典”是有效的,那么这个有效时间为多少小时?解析本题涉及的背景材料专业性很强,但只要读懂题意,用我们学过的函数知识是不难解答的.题目的主要信息是由函数图象给出的,图象是由两条线段组成的折线,可把它看成是两个一次函数图象的组合.(1)当x1时,设y=k1x.将(1,5)代入,得k1=5. y=5x. 当x1时,设y=k2x+b.以(1,5),(8,1.5)代入,得, (2)以y=2代入y=5x,得;以y=2代入,得x2=7. . 故这个有效时间为小时.注:题中图像是已知条件的

6、重要组成部分,必须充分利用.二、表格信息题例5、某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时投入的成本与印数间的相应数据如下:印数x(册)500080001000015000成本y(元)28500360004100053500(1)经过对上表中数据的探究,发现这种读物的投入y(元)是印数x(册)的一次函数,求这个一次函数的解析式(不要求写出的x取值范围)。(2)如果出版社投入成本48000元,那么能印该读物多少册?分析:表中给出了y与x的一些对应数据,选择其中任意两组(如前两组)对应量,就可求出一次函数解析式。解(1)设所求一次函数的解析式为y=kx+

7、b,则解得所求函数的关系式为;(2)x。答:能印该读物12800册。例6、随着我国人口增长速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童人数的变化趋势,试用你所学的函数知识解决下列问题:(1)求入学儿童人数y(人)与年份x(年)的函数关系式;(2)利用所求函数关系式,预测该地区从哪一年起入学儿童的人数不超过1000人?年份(x)200020012002入学儿童人数(y)252023302140解析:建立反比例函数,一次函数或二次函数模型,考察哪一种函数能较好地描述该地区入学儿童人数的变化趋势,这就要讨论.若设(k0),在三点(2000,2520),(2001,23

8、30),(2002,2140)中任选一点确定k值后,易见另两点偏离曲线较远,故反比例函数不能较好地反映入学儿童人数的变化趋势,从而选用一次函数.(1)设y=kx+b (k0),将(2000,2520)、(2001,2330)代入,得故y=-190x+382520.又因为y=-190x+382520过点(2002,2140),所以y=-190x+382520能较好地描述这一变化趋势.所求函数关系式为y=-190x+382520.(2)设x年时,入学儿童人数为1000人,由题意得-190x+382520=1000.解得x=2008.所以,从2008年起入学儿童人数不超过1000人.三、文字信息题例

9、7、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式。(2)如果每套定价700元,软件公司至少要售出多少套软件才能确保不亏本。分析:由题意,总费用由前期投入的开发广告宣传费用和售出时需支付安装调试费用两部分组成。解(1)y=50000+200x。(2)设软件公司至少要售出x套软件才能保证不亏本,则有700x50000+200x。解得x100。答:软件公司至少要售出100套软件才能确保不亏本。四、开放型问题例8、小明、小颖两名同学在学校冬季越野赛中的路程

10、y(千米)与时间x(分)的函数关系如图所示。(1)根据图象提供的数据,求比赛开始后,两人第一次相遇所用的时间;(2)根据图象提供的信息,请你设计一个问题,并给予解答。解(1)设AB的解析式为y=kx+b,把A(10,2),B(30,3)代入得解得,当y=2.5时,x=20。比赛开始后20分钟两人第一次相遇。(2)略(只要设计问题合理,并给出解答,均正确。)五、决策型题例9、某工厂生产某种产品,每件产品的出厂价为1万元,其原材料成本价(含设备损耗等)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产生.为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理.现有两种方案可供选择.方案一

11、:由工厂对废渣直接进行处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元.方案二:工厂将废渣集中到废渣处理厂统一处理.每处理1吨废渣需付0.1万元的处理费.(1)设工厂每月生产x件产品,每月利润为y万元,分别求出用方案一和方案二处理废渣时,y与x之间的函数关系式(利润=总收入-总支出);(2)如果你作为工厂负责人,那么如何根据月生产量选择处理方案,既可达到环保要求又最合算.解析先建立两种方案中的函数关系式,然后根据月生产量的多少通过分类讨论求解.(1)y1=x-0.55x-0.05x-20 =0.4x-20; y2=x-0.55x-0.1x=0.35x.(2)若

12、y1y2,则0.4x-200.35x,解得x400; 若y1=y2,则0.4x-20=0.35x,解得x=400; 若y1y2,则0.4x-200.35x,解得x400. 故当月生产量大于400件时,选择方案一所获利润较大;当月生产量等于400件时,两种方案利润一样;当月生产量小于400件时,选择方案二所获利润较大.注:在处理生产实践和市场经济中的一些问题时,用数学的眼光来分辨,会使我们作出的决策更合理.六、最值型题例10、杨嫂在再就业中心的支持下,创办了“润扬”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息.买进每份0.2元,卖出每份0.3元;一个月(以30天计)内,有20天每天可以卖出2

13、00份,其余10天每天只能卖出120份.一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸,以每份0.1元退回给报社.(1)填表:一个月内每天买进该种晚报的份数100150当月利润(单位:元)(2)设每天从报社买进这种晚报x份(120x200)时,月利润为y元,试求y与x之间的函数关系式,并求月利润的最大值.解析(1)由题意,当一个月每天买进100份时,可以全部卖出,当月利润为300元;当一个月内每天买进150份时,有20天可以全部卖完,其余10天每天可卖出120份,剩下30份退回报社,计算得当月利润为390元.(2)由题意知,当120x200时,全部卖出的20天可获利润:20(0.

14、3-0.2)x=2x(元);其余10天每天卖出120份,剩下(x-120)份退回报社,10天可获利润:10(0.3-0.2)×120-0.1(x-120)=-x+240(元).月利润为y=2x-x+240 =x+240(120x200).由一次函数的性质知,当x=200时,y有最大值,为y=200+240=440(元).注:对于一次函数y=kx+b,当自变量x在某个范围内取值时,函数值y可取最大(或最小)值,这种最值问题往往用来解决“成本最省”、“利润最大”等方面的问题.七、学科结合型题例11、声音在空气中传播的速度y(m/s)(简称音速)是气温x()的一次函数.下表列出了一组不同气温时的音速:气温

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论