


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、北京哈睿数据有限公司电信运营商数据资源现状2017年9月Freewucan * 睿午参1电信运营商数据资源现状 12电信运营商大数据挖掘方向 33电信运营商大数据运营模式 44电信运营商大数据应用实践 9418,680120.0%103.0%100.0%80.0%60.0%40.0%20.0%0.0%移动互联网接入流量(万 G)-同比增长1电信运营商数据资源现状电信运营商积累和沉淀的数据是非常优质的数据资源,数据量非常庞大且数 据极具真实性和完整性。根据工信部数据,2015年,移动互联网接入流量消费 达41.87亿G,同比增速高达103%。流量意味着数据量,当前仅在移动互联 网方面,电信运营商
2、就聚集了海量数据,且还在高速增长。在固定互联网方面,2015年,固定宽带接入时长高达 50.03万亿分钟,同比增长20.7%。当前,中国联通和中国电信已经将数据变现列为2016年的KPI指标,电信运营商在大数据运营方面的探索已经开始。图表1 : 2010-2015 年移动互联网接入流量高速增长450,000400,000350,000300,000250,000200,000150,000100,00050,000图表2 : 2010-2015 年月户均移动互联网接入流量加速增长450.0400.0350.0300.0250.0200.0150.0100.050.0月户均移动互联网接入流量(M
3、/月户) 同比增长以中国移动为例,目前有 CRM、BI、BOSS等系统记录着7.5亿多用户的 交互信息,这些数据涉及客户基本信息,如通话数据、上网数据、数据业务使用 信息、智能终端信息、渠道接触信息等诸多方面,这无疑已具备大数据的“4V ”特征:数据体量巨大(Volume )、数据类型繁多(Variety )、价值密度低(Value )、 处理速度需要快(Velocity )。单就中国移动客服中心而言,客服中心每年服务客户超过 500亿次,每月 服务客户超过30亿次,平均每月系统呼入量达32亿次,人工呼入量2.47亿次, 平均每3秒就有1次1008611呼入,每个接线员每月接听 5 0006
4、000个。 丰富的数据资源为电信运营商开展大数据应用方面的探索奠定了良好基础。图表3 :电信运营商具备的主要数据类型2电信运营商大数据挖掘方向近两年运营商对于大数据的经营发生了较大变化,从过去主要采集用户信 息、ARPU值等用于经分、客户维护等,逐渐转向信令数据、用户数据、APP数 据的采集和分析等。这其中主要由于发生了几大变化,使得运营商更注重大数据:(1)移动互联网时代的到来:进入到移动互联网时代,手机变成用于上网 最多的终端。在移动端上,运营商可以监测到每个用户使用的流量、 用户的常用 APP、每个APP打开次数、停留时间、搜索和浏览的网页等;(2) 由增量用户抢夺变为存量用户维系:目前
5、移动用户已达13亿户,新增空间已十分有限。运营商的策略讲从争夺新增用户转向存量市场的挖掘和用户 维系,并且提高单用户的 ARPU值。因此,运营商更加关注大数据,希冀从中 能够获得更多用户习惯和偏好进而通过针对性的措施提升ARPU o从运营商进行大数据挖掘的出发点进行考量, 运营商目前最为关心的将主要聚焦于如何用大数据提升用户的流量使用量, 以及如何通过新的商业模式获取更 多收益。3电信运营商大数据运营模式十八大提出实施“大数据战略”,确定了大数据已经上升到战略层面。大数 据巨大的应用价值已经被普遍认同,电信运营商作为大数据应用的先行者之一, 基本已部署了大数据平台并开展了各类应用, 但目前电信
6、运营商的大数据应用普 遍面临以下困境:?较大的投入和不确定的收益,使多数大数据应用缺少“性价比”;?受技术和政策法律限制,电信运营商所能提供的数据种类较少,变现收 益有限;?在新兴的大数据产业链上,电信运营商的地位管道化、边缘化。破解大数据困境,关键在于找到适合电信运营商的大数据商业模式, 把数据 潜在价值转化为收益。那么哪些商业模式是适合电信运营商大数据业务呢?电信运营商与合作伙伴的传统商业合作模式是:运营商向合作伙伴采购硬 件、软件和服务,然后向客户提供电信服务并收费。该模式下,合作伙伴只赚取 设备、软件和服务的销售费用,营收严重依赖运营商的资本开支,长期来看增长 空间受限。图表4 :电信
7、运营商与合作伙伴的传统商务模式提供电信服务销售设备/软件/服务合作伙伴电信运营商支付相应费用客户 支付相应费用上述商业模式能够维持的基础是:电信运营商的语音、宽带、流量等传统业 务相对比较简单,无需复杂的设备和技术支持,客户的定制化需求非常有限。通信大数据业务与电信运营商的传统业务有很大不同, 数据量庞大,对采集 分析及安全管理的技术要求非常高, 客户的需求也复杂多样,而三大运营商在现 有的体制下,缺乏大数据思维,基本没有能力独立开展大数据业务。电信运营商在通信大数据业务的运营上, 通常是多种模式同时存在,并且相 互支撑。图表5:电信运营商大数据商业模式&洛业姬祈汕应用按鹘价伯部应用因
8、此,投入到部应电信运营商的数据与电信业务的运营和维护相关性最强,用能产生的数据价值最大。部应用模式以服务于运营商部客户、 提升既有各项业 务效率、降低运营成本为目的,采集和分析设备以及运营过程中生成的各种数据, 包括各种网管数据、设备日志、信令、DPI记录、用户账单、投诉记录等。部应用阶段的典型应用场景一是面向客户体验的网络规划、维护、优化,二是面向电信业务的精准营销。例如中兴通讯与中国电信某省公司共同实施了基于大数据的无线网络运维优化方案,以省为中心,基于中兴通讯的大数据平台,采集了全网各类数据,包括DT/CQT、CDT、MR以及网管、投诉数据,针对无线网络实现了快速故障定位分析,客户投诉处
9、理速度明显加快,并且降低了网络质量检测分析的人力和时 间成本,提高了效率。方案实施后,针对无线网络的故障投诉处理效率提升了 2030倍,每年可节省网络运维成本约 4500万元。部应用模式可以帮助电信运营商持续优化运营,降低运营成本,提高效率,并且是电信运营商开展对外大数据运营的基础。销售数据模式销售数据模式,即对外合作,把运营商将所掌握的有价值数据形成数据产品 或服务,如咨询报告、客流查询、广告服务、征信服务等,向有数据需求的客户 销售,以实现数据价值的货币化,即数据变现。由于电信运营商所掌握的数据种类比较单一,往往对第三方业务的价值有限,且单笔业务的收入规模往往较小,通常与投入的平台建设成本
10、不成比例。因 此,销售数据模式要取得商业的成功, 需要由专业团队对数据进行深度挖掘, 并 关联外部行业数据,以提升数据的价值。为了产生规模效应以及考虑安全性、 响应速度、业务拓展,通常采用集约化方式,统一由一个单位负责经营,以节省建 设成本,提高经营效率。业务运营模式电信运营商大多参与了智慧城市的建设, 并介入数字家庭、智能汽车、医疗、 旅游、教育等行业。电信运营商若能以大数据为基础,建设行业运营平台,通过 参与业务运营,收集业务相关的数据并与电信数据结合, 服务于行业业务,则可 以大大增加数据的价值,并通过业务运营获得更高的收入。以智慧旅游为例,旅行社从运营商获得游客历史轨迹和目标客户的分类
11、信息,与自己掌握的历史订单数据结合,就可以发现潜在客户并为客户推荐目的地 和旅游产品。基于旅游大数据平台,旅行社可以将历史订单数据放到平台上, 与 平台上运营商提供的位置数据和用户分类数据关联计算,而运营商一方面可以获 取使用数据的收入,亦可以分享计算结果,丰富用户旅游目的地选择和旅游商品 的偏好数据,提升旅游目的地和旅游产品推荐的准确率,实现更大的收益。图表6 :电信运营商智慧旅游商业模式$1F性宿去希出门中 TTLfll*戍沉邸ICWA&'g、"化一护订丁交二 i=m运营商还可以与商家合作,向目标客户提供旅游商品优惠券,将优惠券使用 数据与运营商的位置、用户分类数
12、据关联分析,就可以准确掌握目标客户对特定 旅游商品的消费习惯,增加商品推荐的准确性,进而获取更大收益。通过运营智慧旅游业务,在旅游大数据平台上逐步汇聚了与旅游相关的各类 数据,包括政府公开信息、商品目录、消费记录、行程轨迹、网络舆情等,这些 数据相互关联,相互增值,为旅游产业链的所有参与者创造出更多的收益。数据运营模式电信运营商还可以运营开放的大数据平台,转型成为大数据运营商。通过建 设并运营开放的大数据平台,电信运营商可以为客户提供大数据存储和计算服 务,甚至大数据的交换共享以及数据交易服务。电信运营商还可以把所掌握有价值的数据, 在进行脱敏处理后,开放到大数 据平台上,吸引有需求的客户,并
13、实现电信数据能力的价值变现。运营大数据平台,电信运营商可以提升大数据产业链的地位,并获得新的收 入来源,包括数据存储计算租金、数据交易手续费,以及电信数据能力变现收入; 同时,电信运营商还能通过共享和数据交易, 获取到其他行业的数据,服务于自 营业务,甚至有可能基于多样化的数据形成新的创新业务。“大数据战略”的制定,为电信运营商的数据运营模式带来机遇。各行业大 数据应用的快速发展,必然带来巨大的大数据基础设施,尤其是公共大数据平台 的需求。电信运营商具有良好的社会公信力、强大的技术能力和运营能力,完全 可以成为成功的大数据运营商。综上:部应用模式是运营商大数据运营的基础和源头,至少一两年,部应
14、用模式仍是电信运营商整个大数据业务的主要收益来源。数据的采集、处理和分析, 仍会以服务部应用为主。这也决定了其他 3种模式下能够经营的数据种类和质 量。部应用虽然目前收益大,但随着优化的深入,边际收益逐步减少。3种外部 变现模式的收入规模,将随着外部环境对数据需求的增加而增加, 是运营商未来 收入的增长点。同时,通过外部变现模式能够获得电信行业以外的数据, 丰富电 信运营商的数据,并增加数据价值。销售数据模式的运营模式比较清晰, 且能快速获得收益,是目前电信运营商 应用较多的模式,但销售数据模式成本较高,若规模不大会导致无法覆盖成本。业务运营模式结合智慧城市和“互联网+”建设浪潮,通过运营行业
15、大数据 平台,既能结合业务实现数据变现,又能促进行业的智能化运营。数据运营模式,使电信运营商转型为大数据运营商,汇聚各行各业的数据, 提升了运营商产业链地位,创造出新的价值。“大数据战略”的实施,则是电信运营商转型为大数据运营商的历史机遇。4电信运营商大数据应用实践经过电信行业多年的发展,电信运营商目前已经积累了包括行业综合数据、 电信业务分布与收入等结构化数据,与文本、音视频、图片等非结构化数据。从 数据规模来看,无论是用户信息、消费记录还是市场规模数据均体量庞大且基本 保持快速增长。目前我国电信产业正在从人口红利模式逐渐转向流量红利和数据红利,其基于大数据的转型已成新的趋势,海量数据资产将
16、帮助电信行业完成业务创新、 精准营销与资源优化配置等任务。图表7:电信领域大数据的应用场景數据来頑主昼来自用层壺 塩测和揑剧的运善商包抵崖户罔專、進续行王冀来自计雙呆统、经 营理系疑* :®值业务远宣甲台铸垂茨主爰为妊营分护敌協土妄来自企业财务廿創 斑*軒住自动化E具 也财算相黄靜瞬;画场養: ;I *書础设爲建设忧代-理过分祈诵话记录和铤徨用軋现基站和桶的选址与资漏分配 ;! ;*网湮运直舊理与优化 通过占肝网蹈流口说向的变化超嶽网结日茜誓,处时雕贾源配岂螳升!阿络质量用率 1 先眼申心优化诵垃。析書氓刃线呼入害广曲行为悄正、述隠塔径、痢膜时K.両薫济盲輝.I客户序史接融信赫、昨消e»5L基車尬息等数基,理立觀覷戦就越径密式 1M躺间事测客户需求r缗鏡宮區呼、处旳间,并在此基iiLt深疙客户需咸实現楞祐销就国电信运营商而言,战略导向、管理体制、重视程度等多方面因素使得其在大数据发展上始终是小心尝试,而并未真正从大数据中获得可观的收益。图表8 :国电信运营商大数据应用实践运营商大数据对应用方面的探索应用模式中国联通建立中国联通移动用户上网记录查询系统,让用户明明白白消费用户体验提升中国电信打造DMP,致力于提升运营商主营业务营销及精准广告投放效果精准营销运营商大数据对外应用方面的探索应用模式中国电信发布了 “天翼大数据”品牌,推岀精准营销、风险防控、区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实务操作案例及2024年试题与答案
- 2024年电气工程专业知识试题及答案
- 档案信息可靠性试题及答案2024
- 2024年统计师考试知识点复习试题及答案
- 全面剖析系统分析师试题及答案
- 探讨珠宝鉴定师试题及答案的技巧
- 2024年系统分析师考试重点内容回顾及试题答案
- 2024年档案管理常见问题试题及答案
- 力学中的压强问题分析试题及答案
- 2024年税务师智能学习规划试题及答案
- 2025届苏锡常镇四市高三二模试题英语试题试卷含解析
- 2024年GCP考试题库(黄金题型)
- DB11∕T344-2024陶瓷砖胶粘剂施工技术规程
- 2025年公共管理复试试题及答案
- 2025年过氧化工艺证考试题及答案
- 2025年中央一号文件参考试题库100题(含答案)
- (完整版)医疗器械基础知识培训考试试题及答案
- 04S519小型排水构筑物(含隔油池)图集
- 北京市海淀区2024年七年级下学期数学期中考试试卷(附答案)
- 幕墙淋水试验技术方案(工程科)
- 镇墩结构计算
评论
0/150
提交评论