版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、船舶流体力学第7章(打印) 1 第七章势流理论(二) 本章主要讨论: 轴对称有势流动和机翼绕流的有关理论 7.1 轴对称流动 一条曲线绕轴旋转一周形成的物体形状称为旋成体。 当来流沿旋成体中轴线方向绕流旋成体时, 通过中轴线的各子午面上的流动均相同, 这种流动称为 轴对称流动。比如,均匀流绕圆球的流动。 r v v x - 轴对称轴 对于无旋轴对称流动,存在速度势函数 0 和流函数 。 但,速度势函数 0 是调和函数,流函数 不是调和函数。 采用柱坐标 (r, ,x),设 x x 轴为对称轴,流动参数不随 变化。 v r v r (r,x,t) v x v x (r,x,t) 比如: 不可压缩
2、流体的轴对称势流应该满足: 求解不可压缩流体轴对称势流问题的主要任务就是寻求满足以上方程组和边界条件的速度矢量。 连续性方程: rv r rv x 如果存在物体壁面 s,速度应该在物面上满足边界条件: 物面法向流速为零: 无旋条件: 乂乂 0 x r 无穷远处流速: v v 2 有两种数学求解途经 : 3 途径一:控制方程: 物面无穿透条件: 无穷远处来流: 这里: v r , v x r x 速度势函数 0 是调和函数,可以采用叠加法求解。 途径二:控制方程: d 2 物面无穿透条件: v n 0 无穷远处来流: s v * v 这里:v r 1 , r x 1 v x r r 2 x 2
3、r r r 流函数函数屮不是调和函数,称为斯托克斯函数。但它是线性的,也可采用叠加法求解。 基本的轴对称势流: 1. 均匀直线流: v x 轴对称轴 v r 0, v x v , v 0 v r 0, v x v v x r x 又 v r 0, 1 v x v 1 v r r x r r 2 2. 空间点源 ( 汇 ) 流: (0,0)处有一点源 q : q 4 r 2 v r 4 即: 当点源在 x 。 点(轴对称轴上),速度势函数和流函数为: 1 r x o x q 1 q ip x x o 4 f 2 x x 。 4 jr 2 2 x x 。 3. 空间偶极子流: 令: lim q x
4、 m 0 x 0 q 又: 如图,有: 4 r 2 4 r 2 x 2 v r v r v r s in r q r 4 r 2 x 2 厂 x 2 -v x x v r cos rv x rxq 4 r 2 q 4 r 2 x 2 且: rv r r 2 q q x 4 . r 2 x 2 5 令: 1 1 lim x 0 q q x 2 2 .r x x 2 x m 1 m x 4 x 4 x 、 r 2 x 2 4 3 2 2? r x 亦可得: 当偶极子在 x x 0 点(轴对称轴上),速度势函数和流函数为: x x o 3 2 2 r x x o m 2 r 3 4 2 2 t r
5、x xo 二均匀来流绕圆球体的流动: x rcos 采用球坐标(r r 入)。柱坐标与球坐标的关系为: r rsin 均匀流: 偶极子流: 叠加后得到 v x 1 v r 2 2 求出速度: v rcos 2 cos 4 r 2 v r 2 sin 2 2 m sin m 1 2 3 cos r 3 m 1 . 3 sin 4 r 3 6 相应地: r) 3 v r v 1 cos 0 r 3 球表面速度分布: vr 0 v0 设无穷远处压强为 p p,由伯努利方程,有: v e v 1 r 0 3 斎 sin 0 3 v sin 0 2 v 2 v 2 v r 2 v 2 p p p c 2
6、 2 2 于是,得到球表面的压强分布: 2 v 彳 9 2 a p p 1 sin 0 2 4球表面的压强系数分布: c p 1 討2 0 流体作用在球体上的阻力和升力均为零。 解 :叠加三个基本势流的流函数,得到: x r 2 令 =o,得到零流线方程 -v r 2 2 4 ,r 2 x d 2代数方程给出了两条曲线,一条是与轴重合的直线,另一条是卵形封闭曲线。 显然,流函数屮 = = c.给出了均匀直线流绕流卵形回转体所形成的势流流场的流线。这类卵形回转 体也称为兰金( rankine )体。 在球表面 v r = 0,故: m 2 r 3 v ro 3 匹 2 v 2r cos 0 *
7、v r 寻 si 0 例 1 1 : x =d,点汇 -q q; x = - -d d,点源 7 7.3 有限翼展机翼 对机翼理论的研究是流体力学中最引人注目的应用课题之一。 舰船上的舵、水翼、减摇鳍等本身就是机翼,螺旋桨、透平机械的叶片、水泵的叶片等都是利用机 翼的原理工作的。 我们可以利用机翼原理来产生升力(例如飞机、风筝等)或推力(例如螺旋桨等) ,因此机翼理论 的研究对船舶工程有重要意义。 .机翼的几何参数: 翼型: 翼型是机翼剖面的基本形状。 翼型具有产生的升力与阻力之比(升阻比可能大的体形,整体上是优良流线形,使流体能顺着 其表面尽可能无分离地向尖后缘流去。 如图所示为翼型无分离地
8、绕流。 前缘或导边( leading edge):迎流的一端。 后缘或随边( trailing edge): 工程实际中应用的一些翼型的基本形状: 后缘总是尖的(产生环量) 圆前缘:减小形状阻力。 尖前缘:减小压缩性所引起的激波阻力或自由表面所引起的兴波阻力。 中线( center line ): :翼型内各圆弧中点的连线。 翼弦( chord ): :中线两端的连线,常作为翼型基线。 竝音連 t pl ttl m 攻角 a ( angle of attack ):来流与弦之间的夹角。 舵 u 江寸林 a 8 对称翼型:中线与弦线重合的翼型。 厚度( thicheness) t: 翼弦的垂线与
9、翼型上下表面交点之间的最大距离。 相对厚度:翼厚与弦长之比。 二、机翼的平面图形 机翼的常见平面图形: 般来说,翼型的厚度与翼弦相比要小得多,许多实用场合中翼展比翼弦大得多。 展弦比:入= =翼展的平方/ /翼面积 s 入无限翼展机翼,即为二元机翼。 二.有限翼展机翼: 实际上机翼的展弦比均为有限值,故流动是三维的。 对于无限翼展机翼,可近似用一根无限长的涡线(涡线有 r) 来代替,称附着涡。 而对于有限翼展机翼,去卩不能用有限长附着涡来代替机翼,因为这样旋涡会在流体内终止。 对于有限翼展机翼,由于下翼面压力大于上翼面:对于矩形机翼: 匚 l 2 丄 s lb b 水翼入 =5 7 。 船用舵
10、入= 0.5 1.5。 入 v2 称小展弦比机翼。 入 3 称大展弦比机翼。 9 卜、$ 乙於八、 1 二-一 * 4- + 亠 上翼面流线向中间偏移,下翼面流线相反。 上下压差作用下产生自由涡。 h r * + 44 丿 上翼面 下翼面 上 下 自由涡与附着涡联成 n 形涡。 由海姆霍兹定理已知 n 形涡 r= 常数。 图片 三.下洗和诱导阻力: 如图,对于矩形机翼上任一点 a, 坐标为 y, 用半无穷直线涡公式得左自由涡在该点所诱导的速度: 10 e l 3 4 2 l e y 2 l e 左、右翼端涡在机翼下 面产生的平均诱导速度, 方向向下,称为下洗速度,或称为下滑速度。 v v 的方
11、向与翼弦的夹角为: 下洗角可由下式计算: i tan 1 w i v 因为 w i 向下故为负值。 库塔一儒柯夫斯基力为: l v 力 l l"在升力和阻力方向的投影分别为: l v cos i r i v sin i 一般地,下洗速度 w w i 很小, 即 a i 很小, 故有: i sin i tan i 这时: r r - - w w i 下洗角: i i , 升力: l v , 诱导阻力: r i l i w i 如果在翼端装上当板,限制绕流,可减小诱导阻力,如图所示: 左自由涡产生的沿翼展的平均诱导速度为: 因左右对称,整个机翼下面的平均诱导速度为: v z w i w
12、i 2 el v z dy 1 e 来流速度与下洗速两速度矢相加: v w 式中 v v 为实际(有效)来流速度。 2 e 1 w l i e 式中 a 为有效攻角, a 为下洗角或下滑角。 11 7.4 升力线理论 一.有限翼展机翼的升力模型: 实际有限翼展机翼沿翼展方向的剖面的形状,安装角度有变化,各个截面环量也变化。 如图,用 n 形涡系代替单一的 n 形涡,附着涡在翼展上迭合在一起形成升力线, n 形涡系的自由涡 连成一整体而形成涡面。 虽然每根 n 形涡环量不变,但沿翼展不同截面有数目不同的 n 形涡,所以沿翼展环量是变化的。 二.有限翼展机翼的升力线理论: 入 2: 大展弦比机翼。
13、 入 v2: 小展弦比机翼或短翼。 入 2 时机翼的附着涡系可用一根涡丝来代替,这根涡丝通常称为升力线( liftline )。 升力线理论:以升力线为理想模型的计算机翼动力特性的理论。 弓 i 入两点假定: (1) 自由涡面是平面,延伸至无穷远而不翻卷成两股大涡,自由涡面旋涡角速度矢量平行来流。 (2) 翼面上横向流动很小, 任一剖面处可作平面流动处理, 三元效应仅考虑各翼剖面处下洗速度和 下洗角的不同。 12 这就是"简单的切片理论'方法: ii 处强度为 d d () d 的涡丝在升力线上 y 点产生的下洗速度为: d dw1() d u vvj 4 y 沿展向积分得整
14、个自由涡在 y y 处的诱导速度: 1 ; 2 ( )d a/ vv| 4 i y 对于小攻角,下洗角 a i 为小量,有: i w i v 宽度为 y dy 的一段机翼的二维升力为: dl v (y)dy 按定义升力垂直于来流: dl dl cos i v ( y)dy 诱导阻力: dr dltan j w (y)dy 整个机翼的升力和诱导阻力: ! 2 l 2 1 2 j 2 z x | l v (y)dy r i w i (y) (y)dy (y) 一 dy l 2 4 12 4 12 12 y .升力系数和诱导阻力系数: 14 l v (y)dy 而: (y) 2lv a n si n
15、n 式中 a 为待定常数。 n 1 2 2 l v l a n sinn sin d n 1 0 升力系数: c l l一 -a 1 a 1 v 2 s s 2 四.具有最小诱导阻力的机翼平面形状椭圆机翼: 显然,当 6 0 =0 时,阻力最小。对应的机翼环量分布为: () 2v la 1 sin 即: 0 si n 或: sin (a) 0 其中: 0 2v la 1 且: i cos (b) 2 l 2 2 2 (a), (b)两式两边平方后相加得: 一 1 0少 2 即,最小诱导阻力系数的机翼的环量分布为椭圆形状。由于: sinn sin d 2 (n 1) 0 0 (n 1) 所以:
16、l v 、a 2 阻力系数: c r s ( 1 ) -v 2 s 2 这里: na n 2 a 2 n i sin 15 对于其它无扭转的非椭圆机翼,其下洗角和阻力系数修正为: 机翼。 五.展弦比换算: 在进行机翼设计,比如船用舵的设计时,常采用展弦比换算方法。 设两机翼平面形状,翼型及弦长都相同,例如矩形机翼 1 1、2 2,展弦比分别为入 1 和入 2 下洗角沿翼展的分布为: i (y)相应的下洗角为: w i v a i 诱导阻力系数为: c r 显然, c l 时,c r 0 。 即,无限翼展机翼没有诱导阻力。 c l c r i c i ( i 实际中常采用梯形 16 k a 2n
17、 1 n 2 a 展弦比换算步骤如下: cm i 1 1 例 1 1: 一飞机自重 21582n,机翼面积为 20m - -翼展 11m,若水平方向飞行速度为 280km/h,流体密 度卩= 1.226kg/m 3 。求: 1 )升力系数,展弦比,环量; 2 2)设机翼平面形状为矩形,求诱导阻力系数。 沿翼展下洗角的平均值: 或: 1 k na n n 1 sin sin n i sin i ( y )dy k a 2n 1 n 1 所以: i 1 el e2 c l 1 i i 1 1 c l 由相似原理知: 兔 1 = 2 在其上任取一点 e, c l 1 c l 所对应的升力系数为 c 设翼 1 1 的 c l a" 曲线已知, l , 求出几何攻角之差: 解: 展弦比: l 2 6.05 。式中: )的值可参见 p133 表 741。 若: 1 。从 b 点向右作水平直线,长 度为 2 1 。 得到的点 a 为 2 上的一点。 重复上面步骤得一系列翼 2 2 上的点,连接它便是 2 曲线。 17 因飞行水平升力与飞机自重平衡,则升力系数: c l 0.29 环量为: - 20.57m 2 /s v l 查表 7.4.1(参见 p133)得机翼平面形状为矩 形时: -(1 ) 0.335 。诱导阻力系数: c r i 0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版二手车置换及车辆转让协议3篇
- 2024年度土石方项目:分包商责任合同3篇
- 2024年标准民政离婚合同书模板版B版
- 2024版实验室通风排烟系统定制安装合同2篇
- 2024版工业自动化设备采购意向合同模板3篇
- 2024年度金融服务合同:某银行个人理财服务协议3篇
- 2024年三甲医院医生进修人才培养与输送合同3篇
- 2024年新能源开发利用合同:关于新能源技术研发与应用的合作协议
- 2024年标准离婚合同书:综合条款与细则版
- 2024版小区绿化用地租赁合同3篇
- 法律逻辑简单学(山东联盟)智慧树知到期末考试答案章节答案2024年曲阜师范大学
- 小学二年级上册数学-数角的个数专项练习
- 园林设施维护方案
- 医疗器械质量安全风险会商管理制度
- 220kV~750kV油浸式电力变压器使用技术条件
- MOOC 生物化学与分子生物学-中国药科大学 中国大学慕课答案
- 第2课+古代希腊罗马【中职专用】《世界历史》(高教版2023基础模块)
- 金属屋面工程防水技术规程
- 《福建省安全生产条例》考试复习题库45题(含答案)
- 人工智能增强战略规划
- 无机材料与功能化学
评论
0/150
提交评论