(整理)多重共线性的检验与修正_第1页
(整理)多重共线性的检验与修正_第2页
(整理)多重共线性的检验与修正_第3页
(整理)多重共线性的检验与修正_第4页
(整理)多重共线性的检验与修正_第5页
免费预览已结束,剩余6页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、附件二:实验报告格式(首页)山东轻工业学院实验报告 成绩课程名称 计量经济学 指导教师 实验日期 2013-5-25院(系) 商学院 专业班级 实验地点 二机房 学生姓名 学号 同组人 无实验项目名称 多重共线性的检验与修正一、实验目的和要求掌握 Eviews软件的操作和多重共线性的检验与修正二、实验原理Eviews 软件的操作和多重共线性的检验修正方法三、主要仪器设备、试剂或材料Eviews 软件,计算机四、实验方法与步骤(1)准备工作:建立工作文件,并输入数据: CREATE EX-7-1 A 1974 1981; TATA Y X1 X2 X3 X4 X5 ;(2)OLS 估计:LS Y

2、 C X1 X2 X3 X4 X5;(3)计算简单相关系数COR X1 X2 X3 X4 X5 ;(4)多重共线性的解决LS Y C X1;LS Y C X2;LS Y C X3;LS Y C X4;LS Y C X5;LS Y C X1 X3;LS Y C X1 X3 X2;LS Y C X1 X3 X4;LS Y C X1 X3 X5;五、实验数据记录、处理及结果分析(1)建立工作组,输入以下数据:98.45560.20153.206.531.231.89100.70603.11190.009.121.302.03102.80668.05240.308.101.802.71133.9571

3、5.47301.1210.102.093.00140.13724.27361.0010.932.393.29143.11736.13420.0011.853.905.24146.15748.91491.7612.285.136.83144.60760.32501.0013.505.478.36148.94774.92529.2015.296.0910.07158.55785.30552.7218.107.9712.57169.68795.50771.1619.6110.1815.12162.14804.80811.8017.2211.7918.25170.09814.94988.4318.60

4、11.5420.59178.69828.731094.6523.5311.6823.372) OLS估计Dependent Variable: YMethod: Least SquaresDate: 05/25/13 Time: 11:10Sample: 1974 1987Included observations: 14VariableCoefficientStd. Errort-StatisticProb.C-3.49656330.00659 -0.1165260.9101X10.1253300.0591392.1192450.0669X20.0736670.0378771.9448970

5、.0877X32.6775891.2572932.1296460.0658X43.4534482.4508501.4090820.1965X5-4.4911172.214862 -2.0277190.0771R-squared0.970442Mean dependent var142.7129Adjusted R-squared0.951968S.D. dependent var26.09805S.E. of regression5.719686Akaike info criterion6.623232Sum squared resid261.7185Schwarz criterion6.89

6、7114Log likelihood-40.36262F-statistic52.53086Durbin-Watson stat1.972755Prob(F-statistic)0.000007用Eviews进行最小二乘估计得,Y?=-3.497+0.125X1+0.074X2+2.678X3+3.453X4-4.491X5(-0.1) (2.1) (1.9) (2.1) (1.4) (-2.0)R2 =0.970, R 2 =0.952, DW=1.97, F=52.53其中括号内的数字是 t 值。给定显著水平 =0.05 ,回归系数估计值都没有显著性。查 F分布表,得临界值为 F0.05(

7、5,8)=3.69 ,故F=52.53>3.69 ,回归方程显著。(3) 计算简单相关系数COR X1 X2 X3 X4 X5 ;X1X20.8665518672X30.8822931086X40.8524491353X50.8213054448X1179170649919394586460.86655186720.94589569830.96477302200.9825320632X279171200271219291930.88229310860.94589569830.94050582080.9483613464X30649920027123996954270.8524491353

8、0.96477302200.94050582080.9819791774X4193941219223996113630.82130544480.98253206320.94836134640.9819791774X55864691939542713631r12=0.867 , r13=0.882 , r14=0.852 , r15=0.821 , r23=0.946 , r24=0.965, r25=0.983 , r34=0.941 , r35=0.948 , r45=0.982 可见解释变量之间是高度相关的 (4) 多重共线性的解决 , 采用 Frisch 法。&1. 对Y关于 X

9、1,X2, X3,X4,X5作最小二乘回归 :1)LS Y C X1Dependent Variable: Y Method: Least Squares Date: 05/25/13Time: 11:12Sample: 1974 1987Included observations: 14VariableCoefficientStd. Errort-StatisticProb.C-90.9207419.32929-4.7037810.0005X10.3169250.02608112.151610.0000R-squared0.924841Mean dependent var142.7129Ad

10、justed R-squared0.918578 S.D. dependent var26.09805S.E. of regression7.446964 Akaike info criterion6.985054Sum squared resid665.4873 Schwarz criterion7.076347Log likelihood-46.89537 F-statistic147.6617Durbin-Watson stat1.536885 Prob(F-statistic)0.000000得回归方程为:Y?=-90.921+0.317X1(-4.7 ) (12.2)R2 =0.92

11、5, R 2 =0.919, DW=1.537, F=147.6192) LS Y C X2Dependent Variable: YMethod: Least Squares Date: 05/25/13Time: 11:14Sample: 1974 1987Included observations: 14VariableCoefficientStd. Error t-StatisticProb.C99.613496.431242 15.489000.0000X20.0814700.010738 7.5871190.0000R-squared0.827498Mean dependent v

12、ar142.7129Adjusted R-squared0.813123S.D. dependent var26.09805S.E. of regression11.28200Akaike info criterion7.815858Sum squared resid1527.403Schwarz criterion7.907152Log likelihood-52.71101F-statistic57.56437Durbin-Watson stat0.638969Prob(F-statistic)0.000006得回归方程为:Y?=99.614+0.0815X2(15.5 ) (7.6 )R

13、2 =0.828, R 2 =0.813, DW=0.639 ,F=57.5643)LS Y C X3Dependent Variable: YMethod: Least SquaresDate: 05/25/13Time: 11:14Sample: 1974 1987Included observations: 14VariableCoefficientStd. Error t-StatisticProb.C74.648248.288989 9.0057110.0000X34.8927120.563578 8.6815140.0000R-squared0.862651Mean depende

14、nt var142.7129Adjusted R-squared0.851205S.D. dependent var26.09805S.E. of regression10.06704Akaike info criterion7.587974Sum squared resid1216.144Schwarz criterion7.679268Log likelihood-51.11582F-statistic75.36868Durbin-Watson stat0.813884Prob(F-statistic)0.000002得回归方程为:Y?=74.648+4.893X3 (9.0 ) (8.7

15、 )R2 =0.863, R 2 =0.851, DW=0.814 ,F=75.3694) LS Y C X4Dependent Variable: YMethod: Least SquaresDate: 05/25/13Time: 11:15Sample: 1974 1987Included observations: 14VariableCoefficientStd. Error t-StatisticProb.C108.86475.934330 18.344900.0000X45.7397520.838756 6.8431750.0000R-squared0.796019Mean dep

16、endent var142.7129Adjusted R-squared0.779021S.D. dependent var26.09805S.E. of regression12.26828Akaike info criterion7.983475Sum squared resid1806.129Schwarz criterion8.074769Log likelihood-53.88433F-statistic46.82904Durbin-Watson stat0.769006Prob(F-statistic)0.000018得回归方程为:Y?=108.865+5.740X4(18.3 )

17、 (6.8 )R2 =0.796,2R 2 =0.779, DW=0.769 ,F=46.8295) LS Y C X5Dependent Variable: YMethod: Least SquaresDate: 05/25/13 Time: 11:16Sample: 1974 1987Included observations: 14VariableCoefficientStd. Error t-StatisticProb.C113.37476.077133 18.655960.0000X53.0808110.512300 6.0136880.0001R-squared0.750854Me

18、an dependent var142.7129Adjusted R-squared0.730091S.D. dependent var26.09805S.E. of regression13.55865Akaike info criterion8.183490Sum squared resid2206.044Schwarz criterion8.274784Log likelihood-55.28443F-statistic36.16444Durbin-Watson stat0.593639Prob(F-statistic)0.000061得回归方程为:Y?=113.375+3.081X5(

19、18.7 ) (6.0 )22R2 =0.75, R2 =0.73, DW=0.59 ,F=36.16 选第一个方程为基本回归方程。&2. 加入肉销售量 X3,对 Y关于 X1,X3作最小二乘回归1) LS Y C X1 X3Dependent Variable: YMethod: Least SquaresDate: 05/25/13Time: 11:17Sample: 1974 1987Included observations: 14VariableCoefficientStd. Errort-StatisticProb.C-39.7947925.01570-1.5907930.

20、1400X10.2115430.045302 4.6695810.0007X31.9092460.724153 2.6365230.0231R-squared0.953945Mean dependent var142.7129Adjusted R-squared0.945571S.D. dependent var26.09805S.E. of regression6.088671Akaike info criterion6.638146Sum squared resid407.7910Schwarz criterion6.775087Log likelihood-43.46702F-stati

21、stic113.9220Durbin-Watson stat1.655554Prob(F-statistic)0.000000得回归方程为:Y?=-39.795+0.212X1+1.909X3 (-1.6 ) (4.7 )(2.6)R2 =0.954, R 2 =0.946, DW=1.656 ,F=113.922可以看出,加入 X3后,拟合优度 R2和 R2均有所增加,参数估计值的符号也正确,并且 没有影响 X1系数的显著性,所以在模型中保留 X3.2)加入人均收入 X2,对Y关于X1,X2,X3作最小二乘回归LS Y C X1 X3 X2Dependent Variable: YMetho

22、d: Least SquaresDate: 05/25/13 Time: 11:18Sample: 1974 1987Included observations: 14VariableCoefficientStd. Error t-StatisticProb.C-34.7768327.80679 -1.2506600.2395X10.2065350.048000 4.3028100.0016X31.4555201.180189 1.2332940.2457X20.0094250.018923 0.4980370.6292R-squared0.955060Mean dependent var14

23、2.7129Adjusted R-squared0.941577S.D. dependent var26.09805S.E. of regression6.308098Akaike info criterion6.756502Sum squared resid397.9210Schwarz criterion6.939090Log likelihood-43.29551F-statistic70.83889Durbin-Watson stat1.682584Prob(F-statistic)0.000000得回归方程为:Y?=-34.777+0.207X1+0.009X2+1.456X3(-1

24、.3) (4.3) (0.5) (1.2)R2 =0.955, R 2 =0.942, DW=1.683, F=70.839可以看出,再加入 X2后,拟合优度 R2 增加不显著, R 2有所减小,并且 X2和X3系数均不 显著,说明存在严重的共线性。比较 X2和X3,肉销售量比人均收入对粮食销售量的影 响大,所以在模型中保留 X3,略去 X2。3) 加入蛋销售量 X4,对Y关于 X1,X3,X4作最小二乘估计LS Y C X1 X3 X4Dependent Variable: YMethod: Least SquaresDate: 05/25/13 Time: 11:19Sample: 197

25、4 1987Included observations: 14VariableCoefficientStd. Error t-StatisticProb.C-37.9988428.00654 -1.3567850.2047X10.2103140.047919 4.3889780.0014X31.7457671.178590 1.4812340.1694X40.2347891.295874 0.1811820.8598R-squared0.954096Mean dependent var142.7129Adjusted R-squared0.940324S.D. dependent var26.

26、09805S.E. of regression6.375396Akaike info criterion6.777726Sum squared resid406.4568Schwarz criterion6.960314Log likelihood-43.44408F-statistic69.28123Durbin-Watson stat1.673512Prob(F-statistic)0.000001得回归方程为:Y?=-37.999+0.210X1+1.746X3+0.235X4(-1.4)(4.4 ) (1.5) (0.2 )R 2 =0.954, R 2 =0.940, DW=1.674, F=69.281可以看出,在加入 X4后,拟合优度 R2 没有增加, R 2有所减小,并且 X3和X4系 数均不显著,说明存在严重的多重共线性。比较 X3和X4,肉销售量比蛋销售量对粮 食销售量的影响大,所以在模型中保留 X3,略去 X4。4) 加入鱼虾销售量 X5,对 Y关于X1,X3,X5作最小二乘回归LS Y C X1 X3 X5Dependent Variable: YMethod: Least SquaresDate: 05/25/13Time: 11:20Sample:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论