余华_数字信号处理_实验二_第1页
余华_数字信号处理_实验二_第2页
余华_数字信号处理_实验二_第3页
余华_数字信号处理_实验二_第4页
余华_数字信号处理_实验二_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数字信号处理实验二学 院 :电子与信息学院专业班级:通信工程4班学 号:201130301443姓 名:李腾辉实验名称:实验二 实验日期:2013.11.21第二次实验一.实验目的*理解采样率和量化级数对语音信号的影响*设计滤波器解决实际问题二.实验内容语音及音乐信号的采样、滤波音乐信号处理三.实验细节 语音及音乐信号的采样、滤波1题目要求实验要求:利用电脑的声卡录一段语音信号及音乐信号,观察使用不同采样率及量化级数所得到的信号的听觉效果,从而确定对不同信号的最佳的采样率;分析音乐信号的采样率为什么要比语音的采样率高才能得到较好的听觉效果。注意观察信号中的噪声(特别是50hz交流电信号对录音的

2、干扰),设计一个滤波器去除该噪声。2解答过程我分别使用了8k,16k,32k三种采样率录制了三段语音信号,量化级数均采用16位,通过反复的回放对比,发现虽然高于8k的采样率的声音更加饱满,音质更佳,但是对于语音信号来说,8k采样率用于通话交流系统已经足够了,采样率的提高对于音质的提升不大,反而需要更大的信道带宽,得不偿失。同样的,我又分别录制了8k,16k以及32k三种采样率的音乐信号,通过反复对比,可以明显感觉到8k采样率的音乐明显少了许多频率成分,失真严重,高音部分基本听不到了,总之对于音乐信号,8k采样率太低,不适合音乐的欣赏,16k采样率较8k来说频率成分丰富了很多,音乐更加优美动听,

3、32k采样率在此基础上音质有所提升,但个人感觉提升不是很大。我又对比了16k音乐信号的三种不同量化电平(8bit,16bit,32bit)的效果,显然地8bit对应只有256个量化电平,音乐听起来相当粗糙,明显不合适,16bit已经达到了65536个量化电平,是当前音乐主流的量化数,32bit占用了大量了存储空间,音质提升也不大。综上分析,对于语音信号,采用8kHz的采样率,8位量化电平数已经足以进行语音交流;而对于音乐信号,最好能达到16kHz以上的采样率,16位的量化电平足以。附录制的语音音乐信号图下面是我针对voice_8k.wav这个语音信号,对其50Hz噪声进行消除的程序。我首先分析

4、了这个信号的时域和频域的谱图,如下图所示。这段语音信号的内容是“我爱祖国天安门”,从时域图来看,这段信号大约长4秒,全程即使在没有语音的部分也可以看出有小的上下波动,这即是50Hz噪声信号加进去产生的。再看它的频谱图,我用了40960点的DFT变换,由于实信号的对称性,我截取了前20480点作出上图,可以明显看到,在50Hz处有一个明显的冲激,这就是噪声信号,下面我将设计一个50Hz的陷波器来消除这个滤除这个噪声。陷波器的传输函数为其中f为陷波器要滤除信号的频率,a为与陷波器深度相关的参数,a越大,深度越深。由此设计一个f=50的陷波器如下经过此陷波器后的语音信号如下所示:可以看出时域图中原来

5、的杂波干扰减少了。可以看出,原始信号中50Hz附近的冲激被抑制掉了。通过对比滤波前后的语音信号可以发现,滤波后的声音清晰了些。总图对比:=下面贴出程序的代码:f0=50; %50Hz陷波器fs=8000; %采样率8000HzTs=1/fs;NLen=40960; % NLen点DFT变换apha=-2*cos(2*pi*f0*Ts);beta=0.96;b=1 apha 1;a=1 apha*beta beta2;figure(1);freqz(b,a,NLen,fs);%陷波器特性显示x=wavread('voice2_8k_noise.wav');%原信号y=filter

6、(b,a,x);%陷波器滤波处理 n=1:length(x);m=1:NLen; xfft=fft(x,NLen); %对信号进行频域变换xfft=xfft.*conj(xfft)/NLen;y1=fft(y,NLen);y2=y1.*conj(y1)/NLen;figure(2);%滤除前后的信号对比。subplot(2,2,1);plot(n,x);grid;xlabel('Time (s)');ylabel('Amplitude');title('Input signal');subplot(2,2,3);plot(n,y);grid;xl

7、abel('Time (s)');ylabel('Amplitude');title('Filter output');subplot(2,2,2);plot(m*fs/NLen,xfft);axis(0 4000 0 0.15);grid;xlabel('Frequency (Hz)');ylabel('Magnitude (dB)');title('Input signal');subplot(2,2,4);plot(m*fs/NLen,y2);axis(0 4000 0 0.15);grid;

8、xlabel('Frequency (Hz)');ylabel('Magnitude (dB)');title('Filter output');音乐信号处理1题目要求*设计函数实现一段语音或音乐的回声产生*设计均衡器,使得得不同频率的混合音频信号,通过一个均衡器后,增强或削减某些频率区域,以便修正低频和高频信号之间的关系2.1解答过程回音可以由简单的延时单元产生。直达声和在R抽样周期后出现的一种单个回音,可以用梳状滤波器产生,微分方程为:yn=xn+xn-R |<1传输函数为:H(z)=1+z-R梳状滤波器时域和频域波形图如下所示时域上形

9、状大致相同,幅度有微小变化。频谱上滤波前后两边跳动变换较大,幅度变化较大。也可以使用全通滤波器,全通滤波器的传递函数公式为H(Z)=y(Z)/X(Z)=(-K+Z(-m)/(1-K*Z(-m),其中m为回声延时取样,k为反馈系数。用直接1型表示这个传递函数则为:y(n)=k*x(n)+x(n-m)+k*y(n-m)可见其实际上是一个简单的IIR滤波器,时间n的输出有时间n的输入和m点之前的输入与输出计算而得。由于这个IIR滤波器的频率响应为水平直线,所以被称为全通滤波器。全通滤波器时域和频域波形图如下所示对比 梳状滤波器 和 全通滤波器,发现全通滤波器产生的回声效果更佳,可构成一个混响系统,而

10、梳状滤波器则只是单纯的延时叠加。附程序:单回声滤波器y,fs,bits=wavread('voice2_8k.wav');y=y(:,1);z=zeros(3000,1);y;y=y;zeros(3000,1);a=0.5;R=5000;%滤波器阶数设置,其值越高,回声越明显Bz1=1,zeros(1,R-1),a;%单回声滤波器系统函数分子Az1=(1);%单回声滤波器系统函数分母y2=filter(Bz1,Az1,y);%单回声滤波器系统函数 Y2=fft(y2,6001);h,w=freqz(Bz1,Az1);%求设计的滤波器频谱subplot(3,2,1);plot(a

11、bs(h);title('单回声滤波器幅频响应');subplot(3,2,2); plot(angle(h);title('单回声滤波器相频响应');subplot(3,2,3:4);plot(y2);title('单回声滤波器时域图 ');subplot(3,2,5);plot(abs(Y2);title('单回声滤波器幅频 ');subplot(3,2,6);plot(angle(Y2);title('单回声滤波器相频 ');sound(y2,fs,bits); 全通滤波器y,fs,bits=wavread(

12、'voice2_8k.wav');y=y(:,1);z=zeros(3000,1);y;y=y;zeros(3000,1);a=0.5;R=5000;%滤波器阶数设置,其值越高,回声越明显Bz1=a,zeros(1,R-1),1;%全通滤波器系统函数分子Az1=1,zeros(1,R-1),a;%全通滤波器系统函数分母h,w=freqz(Bz1,Az1);yy2=filter(Bz1,Az1,y);YY2=fft(yy2,6001);subplot(3,2,1);plot(abs(h);title('全通滤波器幅频响应');subplot(3,2,2); plo

13、t(angle(h);title('全通滤波器相频响应');subplot(3,2,3:4);plot(yy2);title('全通结构时域图 ');subplot(3,2,5);plot(abs(YY2);title('全通结构幅频 ');subplot(3,2,6);plot(angle(YY2);title('全通结构相频 ');sound(yy2,fs,bits); 2.2解答过程均衡器的基本功能是调节各频段的信号强弱,为了满足该功能,采用如下的方法:Step1:设计出对应八个频段的八个带通滤波器;Step2:对原始信号分

14、八路用八个带通滤波器进行滤波;Step3:将八个滤波器的滤波结果加权求和,权值的设计与均衡器的调节要求一致。这样最终得到的结果便是所需要的均衡结果。其中第2步中各带通滤波器的输入信号均为原始信号,而不是“串联”地滤波。设原始输入信号为x(n),第i路的输出信号为,第i路的权值为,均衡器的输出信号为y(n),则有                        

15、                                                  

16、             (5)                         (6)式中,、为滤波器的参数,N为滤波器的阶数。设计的均衡器如下:8个滚动条分别对8个频率段进行处理,每个滚动条的值都是从0到1,初始值为0.5。这

17、一部分的原理是将采样点N分成0()和N两部分,两部分之间对应相等。然后对滚动条上的值进行对应处理,实现程序如下:global cash; y=cash; 获得全局变量值Fs=22000;t=str2double(get(handles.time,'String');N=2ceil(log2(Fs*t); 获得采样点的值P=fft(y,N);Pyy=2*sqrt(P.*conj(P)/N;f=Fs*(0:N/2-1)/N;f(N/2+1:N)=f(N/2:-1:1); 采样点分段n=8;fmax=max(f); 在频率值中寻找最大值if fmax>30s=get(handl

18、es.s1,'Value'); 从滚动条1获得一个0-1之间的值,但只能缩小该频段声音信号 a=find(f>=30 & f<=100); 在30-100Hz的频率段进行处理 b=(s*2)n; s*2可以实现对声音信号的放大和缩小 Pyy(a)=Pyy(a)*b;P(a)=(P(a).*b).*b; 将系数叠加在原信号上endif fmax>100 对100-200Hz信号的处理 s=get(handles.s3,'Value'); a=find(f>=100 & f<=200); b=(s*2)n; Pyy(a)=Pyy(a)*b;P(a)=(P(a).*b).*b;endif fmax>200 对200-500Hz信号的处理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论