下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学几个重要知识点1.方程的曲线在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫 做方程的曲线.点与曲线的关系 若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上f(x0,y 0)=0;点P0(x0,y0)不在曲线C上f(x0,y0)0两条曲线的交点 若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0点P0(x0,y0)是C1
2、,C2的交点 f2(x0,y0) =0方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有 交点.2.圆圆的定义点集:MOM=r,其中定点O为圆心,定长r为半径.圆的方程(1)标准方程圆心在c(a,b),半径为r的圆方程是(x-a)2+(y-b)2=r2圆心在坐标原点,半径为r的圆方程是x2+y2=r2(2)一般方程当D2+E2-4F0时,一元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,圆心为(-,-,半径是.配方,将方程x2+y2+Dx+Ey+F=0化为(x+)2+(y+)2=当D2+E2-4F=0时,方程表示一个点(-,-);当D2+E2-4F0时
3、,方程不表示任何图形.点与圆的位置关系 已知圆心C(a,b),半径为r,点M的坐标为(x0,y0),则MCr点M在圆C内,MC=r点M在圆C上,MCr点M在圆C内,其中MC=.(3)直线和圆的位置关系直线和圆有相交、相切、相离三种位置关系直线与圆相交有两个公共点直线与圆相切有一个公共点直线与圆相离没有公共点直线和圆的位置关系的判定(i)判别式法(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d=与半径r的大小关系来判定.4.圆锥曲线的统一定义平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l的距离之 比是一个常数e(e0),则动点的轨迹叫做圆锥曲线.
4、其中定点F(c,0)称为焦点,定直线l称为准线,正常数e称为离心率.当0e1时,轨迹为椭圆当e=1时,轨迹为抛物线当e1时,轨迹为双曲线5.坐标变换坐标变换 在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做 坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点 的坐标与曲线的方程.坐标轴的平移 坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫 做坐标轴的平移,简称移轴.函数值域的应用(1)函数值域的常用求法 配方法、分离变量法、单调性法、图象法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域 (2)运
5、用函数的值域解决实际问题,此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决,此类题要求考生具有较强的分析能力和数学建模能力例2:已知函数f(x)=,x1,+,(1)当a=时,求函数f(x)的最小值 (2)若对任意x1,+,f(x)>0恒成立,试求实数a的取值范围 思路分析 解法一运用转化思想把f(x)>0转化为关于x的二次不等式;解法二运用分类讨论思想解得 (1)解 当a=时,f(x)=x+2f(x)在区间1,+上为增函数,f(x)在区间1,+上的最小值为f(1)= (2)解法一 在区间1,+上,f(x)= >0恒成立x2+2x+a>0恒成立 设y=x2+
6、2x+a,x1,+,y=x2+2x+a=(x+1)2+a1递增,当x=1时,ymin=3+a,当且仅当ymin=3+a>0时,函数f(x)>0恒成立,故a>3 解法二 f(x)=x+2,x1,+当a0时,函数f(x)的值恒为正;当a<0时,函数f(x)递增,故当x=1时,f(x)min=3+a,当且仅当f(x)min=3+a>0时,函数f(x)>0恒成立,故a>3 点评 本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力 解题的关健是把求a的取值范围的问题转化为函数的最值问题.通过求f(x)的最值问题来求a的取值范围,体现了转
7、化的思想与分类讨论的思想 演变3:设m是实数,记M=m|m>1,f(x)=log3(x24mx+4m2+m+) (1)证明 当mM时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则mM (2)当mM时,求函数f(x)的最小值 (3)求证 对每个mM,函数f(x)的最小值都不小于1 问题3:函数的奇偶性与单调性函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.判断函数的奇偶性与单调性方法:若为具体函数,严格按照定义判断;若为抽象函数,用好赋值法,注意赋值的科学性、合理性 复合函数的奇偶性、单调性 解决的关键在于 既把握复合过程,又掌握基本函数 例3:已知函数
8、f(x)在(1,1)上有定义,f()=1,当且仅当0<x<1时f(x)<0,且对任意x、y(1,1)都有f(x)+f(y)=f(),试证明 (1)f(x)为奇函数;(2)f(x)在(1,1)上单调递减 思路分析:对于(1),获得f(0)的值进而取x=y是解题关键;对于(2),判定的范围是焦点 证明 (1)由f(x)+f(y)=f()可令x=y=0,得f(0)=0,令y=x,得f(x)+f(x)=f()=f(0)=0 f(x)=f(x) f(x)为奇函数 (2)先证f(x)在(0,1)上单调递减 令0<x1<x2<1,则f(x2)f(x1)=f(x2)+f(x
9、1)=f()0<x1<x2<1,x2x1>0,1x1x2>0,>0,又(x2x1)(1x2x1)=(x21)(x1+1)<0,x2x1<1x2x1,0<<1,由题意知f()<0,即f(x2)<f(x1) f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0 f(x)在(1,1)上为减函数 点评 本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力,对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得 演变4:定义在R上的函数y=f(x),f(0)0,当x>0时,f(x)>
10、;1,且对任意的a、bR,有f(a+b)=f(a)f(b),(1)求证:f(0)=1;(2)求证:对任意的xR,恒有f(x)>0;(3)证明:f(x)是R上的增函数;点拨与提示:根据f(a+b)=f(a)·f(b)是恒等式的特点,对a、b适当赋值.利用单调性的性质去掉符号“f”得到关于x的代数不等式,是处理抽象函数不等式的典型方法.演变5:已知奇函数f(x)的定义域为R,且f(x)在0,+)上是增函数,是否存在实数m,使f(cos23)+f(4m2mcos)>f(0)对所有0,都成立?若存在,求出符合条件的所有实数m的范围,若不存在,说明理由 点拨与提示 本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力 要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题 问题4:二次函数、一元二次方程、一元二次不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人所得税赡养老人指定协议
- 劳动人员合同模板标准版
- 工序课件教学课件
- 《宝洁洗发水调查》课件
- 部队船艇安全报告范文
- 《高级汇编技术》课件
- 公共卫生村级卫生人员培训课件
- 《抗战回望》课件
- 《国际货物买卖实务》课件
- 《防辐射安全宣传栏》课件
- 2024年执业药师资格继续教育定期考试题库附含答案
- 蚯蚓与土壤肥力提升2024年课件
- 天津市和平区2024-2025学年高一上学期11月期中英语试题(含答案含听力原文无音频)
- 2024年高中化学教师资格考试面试试题与参考答案
- DB11-T 2315-2024消防安全标识及管理规范
- 全科医生转岗培训结业考核模拟考试试题
- 吃动平衡健康体重 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
- 部编版(2024秋)语文一年级上册 第七单元 阅读-7.两件宝课件
- 2025届湖南省新课标高三英语第一学期期末综合测试试题含解析
- 电力安全事故典型案例分析
- 2024年四川省宜宾市中考地理试卷(含答案与解析)
评论
0/150
提交评论