人工智能的主要内容和方法0001_第1页
人工智能的主要内容和方法0001_第2页
人工智能的主要内容和方法0001_第3页
人工智能的主要内容和方法0001_第4页
人工智能的主要内容和方法0001_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、人工智能的主要内容和方法人工智能(Artificial Intelligence,简称AI)是50年代兴起的一门新兴 边缘学科,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能),也被认为是二十一世纪三大尖端技术之一(基因工 程、纳米科学、人工智能)。广义的讲,人工智能是关于人造物的智能行为, 而智能行为包括知觉、推理、学习、交流和在复杂环境中的行为。人工智能 的一个长期目标是发明出可以像人类一样或能更好地完成以上行为的机器; 另一个目标是理解这种智能行为是否存在于机器、人类或其他动物中。目前 能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器 就是计

2、算机,人工智能的发展历史是和计算机科学与技术的发展史联系在 一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、 仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。一、AI的主要内容人工智能研究的主要内容包括:知识表示、自动推理和搜索方法、机器 学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、 自动程序设计等方面。知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相 关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法 和框架表示法等。常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理 就是从不同角度来表达常识

3、和处理常识的。问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法, 相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词 逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于 知识处理的需要,近几年来提出了多种非演绎的推理方法, 如连接机制推理、 类比推理、基于示例的推理、反绎推理和受限推理等。搜索是人工智能的一种问题求解方法, 搜索策略决定着问题求解的一个 推理步骤中知识被使用的优先关系。 可分为无信息导引的盲目搜索和利用经 验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识 利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有

4、A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的 搜索问题。机器学习是人工智能的另一重要课题。 机器学习是指在一定的知识表示 意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学 习、连接机制学习和遗传学习等。知识处理系统主要由知识库和推理机组成。 知识库存储系统所需要的知 识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。 推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录 结果或通信需设数据库或采用黑板机制。 如果在知识库中存储的是某一领域 (如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问 题的求

5、解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时 知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。二、AI的研究方法既为人工智能的最终研究目标打好基础,又能创造出短期效益,这是选择人工智能研究最佳方法的标准。尽管人工智能已经创造了一些实用系统, 但这些远未达到人类的智能水平。在过去的几十年里涌现出了大量的方法, 大致可分为两大类。第一类包括符号处理的方法。它们基于 Newell和Simon的物理符号系 统的假说。大多数被称为“经典的人工智能”均在其指导之下。这类方法中, 突出的方法是将逻辑操作应用于说明性知识库。 这种风格的人工智能运用说 明语句来表达问题域的“知识”,

6、这些语句基于或实质上等同于一阶逻辑中 的语句,采用逻辑推理可推导这种知识的结果。这种方法有许多变形,包括 那些强调对逻辑语言中定义域的形式公理化的角色的变形。当遇到“真正的 问题”,这一方法需要掌握问题域的足够知识,通常就称作基于知识的方法。在大多数符号处理方法中,对需求行为的分析和为完成这一行为所做的 机器合成要经过几个阶段。最高阶段是知识阶段,机器所需知识在这里说明。 接下来是符号阶段,知识在这里以符号组织表示(例如:列表可用列表处理 语言LISP来描述),同时在这里说明这些组织的操作。接着,在更低级的阶 段里实施符号处理。多数符号处理采用自上而下的设计方法,从知识阶段向 下到符号和实施阶

7、段。第二类包括所谓的“子符号”方法。它们通常采用自下而上的方式,从 最低阶段向上进行。在最低层阶段,符号的概念就不如信号这一概念确切了。 在子符号方法中突出的方法是“ Animat approach”。偏爱这种方式的人们指 出,人的智能经过了在地球上十亿年或更长时间的进化过程,认为为了制造出真正的智能机器,我们必须沿着这些进化的步骤走。因此,我们必须集中研究复制信号处理的能力和简单动物如昆虫的支配系统,沿着进化的阶梯向上进行。这一方案不仅能在短期内创造实用的人造物,又能为更高级智能 的建立打好坚实的基础。第二类方法也强调符号基础。在物理基础假说中,一个 agent不采用集 中式的模式而运用其不

8、同的行为模块与环境相互作用来进行复杂的行为。机器与环境的相互作用产生了所谓的“自然行为(emergent behavior)”。一个 agent的功能可视作该系统与动态环境密切相互作用的自然属性。agent本身对其行为的说明并不能解释它运行时所表现的功能;相反,其功能很大程度 上取决于环境的特性。不仅要动态的考虑环境,而且环境的具体特征也要运 用于整个系统之中。由子符号派制造的著名样品机器包括“神经网络(Neural network)”。根据模拟生物进化方面的进程,一些有意思的机器应运而生,包括: Sexual crossover Mutation 和 Fitness-proportional

9、 reproductiono 其他 自下而上,含 animat风格的方法是基于控制理论和动态系统地分析。介于自上而下和自下而上之间的方法是一种“环境自动机(situated automata)”的方法。Kaelbling 和Rosenscheinit议编写一种程序设计语言来说明 agent在高水平上所要求的 行为,并编写一编译程序,以从这种语言编写的程序中产生引发行为的线路。径向基函数神经网络 MATLAB仿真一、RBF网络的工作原理径向基函数神经网络(Radial Basis Function Neural Network, RBF)是种前馈神经网络,一般为三层结构,如下图:b06( x-g

10、 )上图所示为nhm结构的RBF网络,即网络具有n个输入,h个隐 节点,m个输出。其中x=(Xi, x2, , Xn)T6 Rn为网络输入矢量,W6RnXm为输 出权矩阵,b。, .,bm为输出单元偏移,y=(y1, y2, , ym)T为网络输出,i(*)为第 i个隐节点的激活函数。图中输出层节点中的工表示输出层神经元采用线性 激活函数(输出神经元也可以采用其他非线性激活函数,如Sigmoidal函数)。RBF网络的最显著的特点是隐节点的基函数采用距离函数(如欧式距 离),并使用径向基函数(如 Gaussian高斯函数)作为激活函数。径向基函 数关于n维空间的一个中心点具有径向对称性, 而且

11、神经元的输入离该中心 点越远,神经元的激活程度就越低。隐节点的这个特性常被称为“局部特性”。 因此RBF网络的每个隐节点都具有一个数据中心,上图中G就是网络中第i个隐节点的数据中心值,| * |则表示欧式范数。径向基函数i(*)可以取多种形式:1. Gaussian函数 i(t) et2/济2. Reflected sigmoidal 函数£(t) 1/(1 et2/。3. 逆 Multiquadric 函数Oi(t) 1/(t2 屋:口 0以上三式中的6i称为该基函数的扩展常数(Spread)或宽度。显然越 小,径向基函数的宽度就越小,基函数就越具有选择性。与输出节点相连的隐层第i

12、个隐节点的所有参数可用三元组(G,乳 3) 表示。每个隐层神经元都对输入x产生一个响应i(|x-cj|),且响应特性成径向对称(即是一个个同心圆),而神经网络的输出则是所有这些响应的加 权和,因此第k个输出可表示为hyk-i(|x-Ci |)i 1由于每个神经元具有局部特性,最终整个 RBF网络也呈现“局部映射”特性,即RBF网络是一种局部相应神经网络。这意味着如果神经网络有较 大的输出,必定激活了一个或多个隐节点。RBF网络的聚类学习算法RBF网络的学习算法应该解决以下问题: 结构设计,即如何确定网络隐 节点数h;确定各径向基函数的数据中心 G及扩展常数储;输出权值修正 如果知道了网络的隐节

13、点数、数据中心和扩展常数,RBF网络从输入到输出 就成了一个线性方程组,此时权值学习可采用最小二乘法。RBF网络最常用的学习算法有聚类方法、梯度训练方法及OLSffi选算法。 下面将详细介绍最经典的RBF网络学习算法一聚类方法,并进行 MATLA防 真。聚类方法的思路是先用无监督学习(用k-means算法对样本输入进行聚类)方法确定RBF网络中h个隐节点的数据中心,并根据各数据中心之间的 距离确定隐节点的扩展常数,然后用有监督学习(梯度法)训练各隐节点的 输出权值。假设Xi,X21 , Xn为样本输入,相应的样本输出(教师信号)为yi, y2, , yN, 网络中第j个隐节点的激活函数为j(*

14、)。k为迭代次数,第k次迭代时的聚 类中心为 5(k), c2(k), ,ch(k),相应的聚类域为1(k), 32(k), , 3h(k)。 k-means聚类算法确定RBF网络数据中心g和扩展常数6i的步骤如下:(1)算法初始化:选择h个不同的初始聚类中心,并令 k=1。初始聚类 中心的方法很多,比如,从样本输入中随机选取,或者选择前h个样本输入, 但这h个初始数据中心必须取不同值。(2)计算所有样本输入与聚类中心的距离|Xj-G(k)|, i=1,2, ,h, j=1,2, ,N o(3)对样本输入Xj按最小距离原则对其进行分类:即当 i(Xj)=min|Xj-Ci(k)|, i=1,2

15、, ,h 时,Xj 即被归为第 i 类,即为6。仆)。(4)重新计算各类的新的聚类中心:1Ci(k 1) x,i 1,2, ,hNi x i(k)式中,Ni为第i个聚类域3 i(k)中包含的样本数。(5)如果Ci(k+1)?Ci(k),转到步骤(2),否则聚类结束,转到步骤(6)。(6)根据各聚类中心之间的距离确定各隐节点的扩展常数。隐节点的扩展常数取= R di,其中di为第i个数据中心与其他最近的数据中心之间的距 离,即di=mjn |Cj-Ci(k)|,K称重叠系数。一旦各隐节点的数据中心和扩展常数确定了,输出权矢量3 =( 3 1, 3 2, ,3 h)T就可以用有监督学习方法(如梯度

16、法)训练得到,但更简洁的方法是使 用最小二乘方法(LMS)直接计算。假定当输入为 X, i=1,2, ,N时,第j 个隐节点的输出如下式所示:hijj(|Xi -Cj |)则隐层输出阵为H hj则H 6RN" 如果RBF网络的当前权值为3=(31, 32, , 3h)T (待定),则 对所有样本,网络输出矢量为y h令11y y|为逼近误差,则如果给定了教师信号y=(y1, y2, , ym)T并确定了 H ,便可通过最小化下式求出网络的输出权值:|y y| |y h |通常3可用最小二乘法求得式中,H为H的伪逆,即T 1 TH (HT H) 1 Ht三、 RBF网络MATLAB 仿

17、真实例题目:基于聚类方法的y=sinx函数逼近解:RBF网络隐层采用标准Gaussian径向基函数,输出层采用线性激活函数,即f( u ) = u。数据中心和扩展常数用聚类方法得到,输出权值和偏移采用广义逆方法求解。隐节点数(即聚类数)取 10,初始聚类中心取前10个训练样本。MATLAB 程序:%训练样本数%测试样本数%样本输入维数%隐节点(聚类样本)数%隐节点重叠系数Kfunction main() SamNum=200;TestSamNum=201;InDim=1;ClusterNum=10;Overlap=1.0;%根据目标函数获得样本输入输出rand('state',

18、sum(100*clock);% resets the generator to a different state each time%且state不同产生的伪随机序列顺序不同SamIn=14*rand(1,SamNum)-7;SamOut=sin(SamIn);TestSamIn=-7:0.07:7;TestSamOut=sin(TestSamIn);%7-(-7)/0.07+1=201 个样本figure hold on grid plot(SamIn,SamOut,'b +') plot(TestSamIn,TestSamOut,'k -')% 绘制目标函数曲线xlabel('Input x'); ylabel('Output y');title('基于聚类的RBF网络对函数y=sinx的逼近曲线'),Centers=SamIn(:,1:ClusterNum);%初始聚类中心取前 10个训练样本NumberInClusters=zeros(ClusterNum,1);%各类中的样本数,初始化为 0IndexInClusters=zeros(ClusterNum,SamNum);% 各类所含样本的索引号while 1,NumberInClusters=zeros(ClusterNum,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论