版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1机动 目录 上页 下页 返回 结束 2( )SKdAS欢迎大家选修欢迎大家选修 课程课程, 预祝每一位同学都有新收获预祝每一位同学都有新收获! 数学史与数学文化数学史与数学文化 主讲主讲:云南财经大学中华职业学院云南财经大学中华职业学院2机动 目录 上页 下页 返回 结束 2( )SKdAS看看我们的美丽世界看看我们的美丽世界为什么要学习数学呢为什么要学习数学呢? 序序3机动 目录 上页 下页 返回 结束 2( )SKdAS一、自然界里的数学一、自然界里的数学 1. 植物中隐藏的神秘数学植物中隐藏的神秘数学 向日葵中心种子的排列图向日葵中心种子的排列图案符合案符合斐波那契数列斐波那契数列,
2、这个这个序列以螺旋状从花盘中心序列以螺旋状从花盘中心开始体现出来开始体现出来.为了使花盘为了使花盘中的葵花籽数量达到最多中的葵花籽数量达到最多,大自然为向日葵选择了最大自然为向日葵选择了最佳的黄金数字佳的黄金数字.花盘中央的花盘中央的螺旋角度恰好是螺旋角度恰好是137.5度度,十十分精确分精确,只有只有0.1度的变化度的变化. 4机动 目录 上页 下页 返回 结束 2( )SKdAS3片花瓣的代表:鸭片花瓣的代表:鸭跖草跖草(上上),鸢尾,鸢尾(下下). 1. 植物中隐藏的神秘数学植物中隐藏的神秘数学 植物的叶片或者花朵或果植物的叶片或者花朵或果壳都有着神奇的对称比例壳都有着神奇的对称比例,
3、一些植物形态中存在的这一些植物形态中存在的这些黄金比例实际上就是一些黄金比例实际上就是一种隐藏的种隐藏的“斐波那契数斐波那契数列列”. 松塔的螺线松塔的螺线: 左旋左旋13. 5片花瓣的代片花瓣的代表:报春花表:报春花(左左),杏花杏花(右右) . 5机动 目录 上页 下页 返回 结束 2( )SKdAS3. 风景中的数学风景中的数学 美国纽约罗切美国纽约罗切斯特理工大学斯特理工大学数学系学生数学系学生Nikki Graziano的摄影的摄影 . 6机动 目录 上页 下页 返回 结束 2( )SKdAS3. 风景中的数学风景中的数学 2013年年5月月22日日, 英英国威尔特郡文德米国威尔特郡
4、文德米尔惊现一个奇特的尔惊现一个奇特的麦田怪圈,令人惊麦田怪圈,令人惊叹的是,它竟然展叹的是,它竟然展现了现了“世界上最美世界上最美丽的数学定理丽的数学定理”莱昂哈德莱昂哈德欧拉定欧拉定理理ei+1=0 . 7机动 目录 上页 下页 返回 结束 2( )SKdAS4. 闭月羞花闭月羞花 面部黄金比例面部黄金比例. 8机动 目录 上页 下页 返回 结束 2( )SKdAS4. 魔鬼身材魔鬼身材 人体黄金比例人体黄金比例0.618. 9机动 目录 上页 下页 返回 结束 2( )SKdAS10机动 目录 上页 下页 返回 结束 2( )SKdAS11机动 目录 上页 下页 返回 结束 2( )SK
5、dAS5. 美丽的美丽的芭蕾芭蕾 芭蕾演员虽然身材修长芭蕾演员虽然身材修长, 但其腰长与身高之比平均约为但其腰长与身高之比平均约为0.58,只有在翩翩起舞时、踮起脚尖只有在翩翩起舞时、踮起脚尖, 方能展现方能展现0.618的魅力的魅力 . 12机动 目录 上页 下页 返回 结束 2( )SKdAS二二 、数学造就艺术美、数学造就艺术美 1. 数学造就绘画美数学造就绘画美 绘画艺术中绘画艺术中的黄金比例的黄金比例. 13机动 目录 上页 下页 返回 结束 2( )SKdAS1. 数学造就绘画美数学造就绘画美 14机动 目录 上页 下页 返回 结束 2( )SKdAS2. 数学造就建筑美数学造就建
6、筑美 希腊巴台农神庙希腊巴台农神庙 埃及金字塔埃及金字塔 15机动 目录 上页 下页 返回 结束 2( )SKdAS三三 、数学与乐音、数学与乐音 音乐中的音乐中的 1,2,3 并不是数字而是专门的记号并不是数字而是专门的记号,唱出来唱出来是是 do, re, mi, 它来源于中世纪意大利一首赞美诗中前它来源于中世纪意大利一首赞美诗中前七句每一句句首的第一个音节七句每一句句首的第一个音节. 而音乐的历史像语言而音乐的历史像语言的历史一样悠久的历史一样悠久, 其渊源已不可考证其渊源已不可考证. 但令人惊异的是但令人惊异的是我们可以运用数学知识来解释音乐的许多规则其中包我们可以运用数学知识来解释音
7、乐的许多规则其中包括音乐基本元素括音乐基本元素乐音的构成原理乐音的构成原理, 也就是说也就是说 1, 2, 3这些记号确实有着数字或数学的背景这些记号确实有着数字或数学的背景. 16机动 目录 上页 下页 返回 结束 2( )SKdAS 如果說如果說“音乐是听觉的数学音乐是听觉的数学”, 那么其数学就是音那么其数学就是音律律; 反过来反过来, 如果說如果說“数学是理性发出的音乐数学是理性发出的音乐”, 那么那么其音律就是逻辑其音律就是逻辑. 傅立叶定理的发现使音乐中的弦内之音表述清楚而傅立叶定理的发现使音乐中的弦内之音表述清楚而简单,恩格斯曾说过,傅立叶分析是数学的音乐简单,恩格斯曾说过,傅立
8、叶分析是数学的音乐.17机动 目录 上页 下页 返回 结束 2( )SKdAS 傅立叶傅立叶弦内之音弦内之音: 1( , )(cossin)nnananu x tCttll0,(0, )( , )0( ,0)( ),( ,0)( )ttxxtuauutu l tu xx u xx18机动 目录 上页 下页 返回 结束 2( )SKdAS 这些都蕴含着 深刻的数学道理潜藏着神奇的数学奥秘19机动 目录 上页 下页 返回 结束 2( )SKdAS我们来聆听古代先贤的教导我们来聆听古代先贤的教导. 为什么是这样而不是那样呢?为什么是这样而不是那样呢? 公元前六世纪的伊奥尼亚的哲学家泰勒斯如是说公元前
9、六世纪的伊奥尼亚的哲学家泰勒斯如是说: 水是万物的始基!水是万物的始基! 这一命题开创了人类认识的一个新时代这一命题开创了人类认识的一个新时代, 拉开了从拉开了从哲学角度审视世界的大幕哲学角度审视世界的大幕. 20机动 目录 上页 下页 返回 结束 2( )SKdAS毕达哥拉斯如是说毕达哥拉斯如是说: 万物皆数万物皆数(指整数指整数). 21机动 目录 上页 下页 返回 结束 2( )SKdAS 毕达哥拉斯学派的自然哲学很难与实际相吻合,但毕达哥拉斯学派的自然哲学很难与实际相吻合,但他们确言中了后来两条证明是他们确言中了后来两条证明是极为重要的信条极为重要的信条:第一是第一是自然界是按自然界是
10、按数学原理数学原理构成的;第二是构成的;第二是数学关系数学关系决定、统决定、统一并显示了自然的秩序一并显示了自然的秩序 .22机动 目录 上页 下页 返回 结束 2( )SKdAS 希腊哲学家不仅都重视对实质的探讨希腊哲学家不仅都重视对实质的探讨, 而且从毕达而且从毕达哥拉斯开始哥拉斯开始, 所有哲学家都认为世界是依照数学设计的所有哲学家都认为世界是依照数学设计的. 在这个经典时期末期在这个经典时期末期, 上述观点已经确立上述观点已经确立, 并且开始了并且开始了对数学规律的探求对数学规律的探求. 虽然这个观点并未影响后世所有的虽然这个观点并未影响后世所有的数学家数学家, 但一旦为人接受但一旦为
11、人接受,它就作用于大多数伟大数学家它就作用于大多数伟大数学家的思维的思维, 甚至影响了那些尚未接触过它的人甚至影响了那些尚未接触过它的人. 希腊人这一希腊人这一重要思想的最大胜利是他们认为宇宙是按可为人类思维重要思想的最大胜利是他们认为宇宙是按可为人类思维所能发掘的数学规律运行的所能发掘的数学规律运行的 . 23机动 目录 上页 下页 返回 结束 2( )SKdAS 希腊人欲得到宇宙的数学规律希腊人欲得到宇宙的数学规律, 他们在这方面成就如他们在这方面成就如何呢?由欧几里得、阿波罗尼乌斯、阿基米得和托勒密何呢?由欧几里得、阿波罗尼乌斯、阿基米得和托勒密所创立的数学的精华有幸传给了我们。在时间上
12、他们属所创立的数学的精华有幸传给了我们。在时间上他们属于希腊文化的第二个重要时期,亚历山大里亚时期于希腊文化的第二个重要时期,亚历山大里亚时期(前前300年公元年公元600年年) . Euclid,前前325年年前前265年年 Apollonius,约前约前262年约前年约前190年年 Archimed, 前前287年年前前212年年 24机动 目录 上页 下页 返回 结束 2( )SKdAS 欧几里得著作具有系统、演绎的形式欧几里得著作具有系统、演绎的形式, 是许多古希是许多古希腊人孤立发现的汇合腊人孤立发现的汇合, 其标志是他的著作其标志是他的著作几何原本几何原本的问世的问世 . 几何原本
13、几何原本是接收了圆锥曲线的理论是接收了圆锥曲线的理论, 在亚历山在亚历山大里亚学习数学的小亚细亚南岸的佩尔加人阿波罗尼乌大里亚学习数学的小亚细亚南岸的佩尔加人阿波罗尼乌斯斯, 继续其关于抛物线、椭圆和双曲线的研究继续其关于抛物线、椭圆和双曲线的研究, 并写出了并写出了这方面的经典著作这方面的经典著作圆锥曲线圆锥曲线 . 在亚历山大里亚受教育而生在西西里的阿基米得对在亚历山大里亚受教育而生在西西里的阿基米得对纯几何学知识增添了几本著作纯几何学知识增添了几本著作论球和圆柱论球和圆柱, 论论劈劈锥曲面体与球体锥曲面体与球体,抛物线的求积抛物线的求积 . 25机动 目录 上页 下页 返回 结束 2(
14、)SKdAS托托勒勒密密的的本本轮轮均均轮轮模模型型 托勒密托勒密 (C. Ptolemy, 公元公元90年年168年年)托勒密相信托勒密相信:宇宙是按数学规律宇宙是按数学规律运行的运行的. 依此思想依此思想写成了写成了至大论至大论一书一书.26机动 目录 上页 下页 返回 结束 2( )SKdAS托托勒勒密密的的本本轮轮均均轮轮模模型型 托勒密在书中得出了从里到外的如下的顺托勒密在书中得出了从里到外的如下的顺序序:月亮、水星、金星、太阳、火星、木星、月亮、水星、金星、太阳、火星、木星、土星、恒星土星、恒星.托勒密的天体次序托勒密的天体次序 他就假定他就假定, 天空中的所有可能高度都被诸天空中
15、的所有可能高度都被诸行星占满行星占满: 每个行星都有自己时时占据的高度每个行星都有自己时时占据的高度带带, 这些高度带相互之间既不重叠这些高度带相互之间既不重叠, 也没有缝隙也没有缝隙.27机动 目录 上页 下页 返回 结束 2( )SKdASP本本轮轮地球地球 E O E CEquant对应点对应点均轮均轮托托勒勒密密的的本本轮轮均均轮轮模模型型28机动 目录 上页 下页 返回 结束 2( )SKdAS托托勒勒密密的的本本轮轮均均轮轮模模型型 托勒密算出整个宇宙的半径是地球半径的托勒密算出整个宇宙的半径是地球半径的19,865倍倍, 或者说或者说120700000公里公里. 托勒密的宇宙尺度
16、托勒密的宇宙尺度 有些现代作者认为这一宇宙图像错得无可有些现代作者认为这一宇宙图像错得无可救药救药, 指出这个宇宙尺度甚至还小于地球到太指出这个宇宙尺度甚至还小于地球到太阳的真实距离阳的真实距离. 但是历史地看但是历史地看, 倒不如说倒不如说, 正是托勒密首正是托勒密首次把宇宙尺度第一次变得如此巨大次把宇宙尺度第一次变得如此巨大, 以至于让以至于让人类心灵难以真正理解它了人类心灵难以真正理解它了.29机动 目录 上页 下页 返回 结束 2( )SKdAS 利用他们的数学成就和许多科学研究结果利用他们的数学成就和许多科学研究结果,希腊人对希腊人对宇宙是依据数学设计的宇宙是依据数学设计的, 给出了
17、充分的证明给出了充分的证明. 数学实质数学实质上存在于宇宙万物之中上存在于宇宙万物之中, 它是关于自然界结构的真理它是关于自然界结构的真理, 或或者如柏拉图所说者如柏拉图所说, 是物质世界的客观存在是物质世界的客观存在. 宇宙存在规律宇宙存在规律和秩序和秩序, 数学是达到这种有序的关键数学是达到这种有序的关键. 而且而且, 人类理性人类理性可以洞察这个设计并且揭示其数学结构可以洞察这个设计并且揭示其数学结构 . 30机动 目录 上页 下页 返回 结束 2( )SKdAS 希腊人的宗旨希腊人的宗旨自然是依数学设计的,与文艺复自然是依数学设计的,与文艺复兴时的信念兴时的信念上帝是这个设计的作者,融
18、汇在一起,上帝是这个设计的作者,融汇在一起,统治了欧洲,关于这一点最令人信服的证据就是哥白尼统治了欧洲,关于这一点最令人信服的证据就是哥白尼的所创立的的所创立的“日心说日心说” . 尼古拉尼古拉哥白尼哥白尼 约翰尼斯约翰尼斯开普勒开普勒 31机动 目录 上页 下页 返回 结束 2( )SKdAS 哥白尼也确信哥白尼也确信自然的数学规律自然的数学规律, 但他假设每个天体但他假设每个天体, 无论是月亮还是行星无论是月亮还是行星, 都在一个圆周上运动都在一个圆周上运动,这个圆的圆这个圆的圆心又在另一个圆周上运动心又在另一个圆周上运动. 开普勒开普勒确信存在自然的数学规律确信存在自然的数学规律, 并在
19、努力寻找并在努力寻找和谐和谐的数学关系的数学关系时时, 却取得了极大的成功却取得了极大的成功, 他最著名也是最重他最著名也是最重要的成果就是我们今天所说的开要的成果就是我们今天所说的开普勒行星运动三定律普勒行星运动三定律 . 普勒行星运动三定律普勒行星运动三定律 是数学规律是数学规律. 32机动 目录 上页 下页 返回 结束 2( )SKdAS开普勒第一定律开普勒第一定律: 每一行星沿一个椭圆轨每一行星沿一个椭圆轨 道环绕太阳运动道环绕太阳运动,而太阳则处而太阳则处在椭圆的一个焦点上在椭圆的一个焦点上 . 33机动 目录 上页 下页 返回 结束 2( )SKdAS开普勒第二定律开普勒第二定律:
20、 每一个行星和太阳的联线在相等的时间内扫过相等每一个行星和太阳的联线在相等的时间内扫过相等的面积的面积 . 34机动 目录 上页 下页 返回 结束 2( )SKdAS开普勒第三定律开普勒第三定律: 所有行星绕太阳公转的周期所有行星绕太阳公转的周期(行星年行星年)的平方跟椭圆轨的平方跟椭圆轨道的半长轴的立方的比都相等道的半长轴的立方的比都相等 . 即即32RkT其中其中k 的大小与行星无关的大小与行星无关, 只与太阳质量有关只与太阳质量有关. 短轴短轴长轴长轴R35机动 目录 上页 下页 返回 结束 2( )SKdAS 上帝设计了宇宙,因此可以推测所有的自然现象都上帝设计了宇宙,因此可以推测所有
21、的自然现象都遵循一个总的规划,上帝极可能用一套基本原理来支配遵循一个总的规划,上帝极可能用一套基本原理来支配相联的事物。对于十七世纪致力于揭示上帝的自然设计相联的事物。对于十七世纪致力于揭示上帝的自然设计的数学家和科学家来说,合乎情理的做法似乎应该是去的数学家和科学家来说,合乎情理的做法似乎应该是去寻求控制各种地面物体运动和天体运动的统一规律寻求控制各种地面物体运动和天体运动的统一规律 . 在实施他推导宇宙运动规律的计划的过程中在实施他推导宇宙运动规律的计划的过程中, 牛顿牛顿对对代数、几何、尤其是微积分做出了许多贡献代数、几何、尤其是微积分做出了许多贡献, 而这些仅而这些仅仅是为达到其科学目
22、标的辅助工作仅是为达到其科学目标的辅助工作. 他致力于寻找能导他致力于寻找能导出一个统一地上物体运动和天体运动的定律的科学原理出一个统一地上物体运动和天体运动的定律的科学原理,幸运的是,正如狄德罗幸运的是,正如狄德罗(Denis Diderot ,17131784)所说所说的,自然界把秘密告诉了牛顿的,自然界把秘密告诉了牛顿. 36机动 目录 上页 下页 返回 结束 2( )SKdAS2mMFGr例如例如, 万有引力定律万有引力定律: 37机动 目录 上页 下页 返回 结束 2( )SKdAS 牛顿的光辉业绩呈现给人类一个崭新的世界秩序牛顿的光辉业绩呈现给人类一个崭新的世界秩序, 和和一个用一
23、套普遍的一个用一套普遍的, 仅用数学表述的物理原理控制的宇仅用数学表述的物理原理控制的宇宙宙. 这是一个包括了石头下落、海洋潮汐、行星及其卫这是一个包括了石头下落、海洋潮汐、行星及其卫星运动、彗星挑战性的大尾巴以及恒星辉煌庄严的运动星运动、彗星挑战性的大尾巴以及恒星辉煌庄严的运动的宏大的规划的宏大的规划. 借助于数学描述进行研究借助于数学描述进行研究, 十七世纪的学者们发现十七世纪的学者们发现了一个量化了的世界了一个量化了的世界. 他们将物理世界的具体事物转换他们将物理世界的具体事物转换成数学公式成数学公式, 从而留给后人一个数学的、定量的世界从而留给后人一个数学的、定量的世界, 这这就是繁荣
24、至今的就是繁荣至今的自然的数学化自然的数学化的开始的开始 . 38机动 目录 上页 下页 返回 结束 2( )SKdAS 不管自然科学家们在何处巡查不管自然科学家们在何处巡查,总能发现证明世界具总能发现证明世界具有设计与和谐行为的规律和数学定律有设计与和谐行为的规律和数学定律. 自然界具有条理自然界具有条理性、规律性、理性和可预见性性、规律性、理性和可预见性. 人类是自然秩序不可分割的一个组成部分人类是自然秩序不可分割的一个组成部分,也是上帝也是上帝的创造物的创造物. 时髦的唯物主义哲学告诉我们时髦的唯物主义哲学告诉我们, 物质决定意物质决定意识,故人的意识与肉体也是物质世界的一部分识,故人的
25、意识与肉体也是物质世界的一部分. 因此因此,人人类的行为必然有普遍的自然规律类的行为必然有普遍的自然规律 . 39机动 目录 上页 下页 返回 结束 2( )SKdAS 一旦发现了这些真正的规律一旦发现了这些真正的规律, 人类将生活得更美好,人类将生活得更美好,社会也会变得稳定而公正社会也会变得稳定而公正. 因为它们最后会与因为它们最后会与“自然秩自然秩序序”相一致相一致. 如果人类社会经过强制手段或经过引导而如果人类社会经过强制手段或经过引导而遵循这些规律遵循这些规律, 那么社会的弊病就会消失那么社会的弊病就会消失 . 人们最终相信有必要建立一门关于人类的演绎科学人们最终相信有必要建立一门关
26、于人类的演绎科学. 相应地,社会科学家们开始鉴定、分析和总结在相应地,社会科学家们开始鉴定、分析和总结在人类关人类关系中那些发挥作用的普遍规律系中那些发挥作用的普遍规律 . 40机动 目录 上页 下页 返回 结束 2( )SKdAS 社会科学家们希望社会科学家们希望数学数学在这一领域取得在其它纯科在这一领域取得在其它纯科学领域内同样辉煌的成就学领域内同样辉煌的成就. 美酒、歌曲,以及要获得这美酒、歌曲,以及要获得这些享受所必需的财富,都成了数学的研究对象些享受所必需的财富,都成了数学的研究对象 . 假如存在社会规律,那么社会科学家们将怎样发现假如存在社会规律,那么社会科学家们将怎样发现它们呢?
27、数学为提供答案树立了榜样。首先,它们呢?数学为提供答案树立了榜样。首先,他们必须他们必须发现一些基本的公理,这些从思想和经验中产生的公理发现一些基本的公理,这些从思想和经验中产生的公理, 自身应该有足够的证据表明它们合乎人性,这样所有的自身应该有足够的证据表明它们合乎人性,这样所有的科学家才会承认它们。然后通过严密的、完美的数学推科学家才会承认它们。然后通过严密的、完美的数学推理,从这些公理中推导出关于人类行为的定理理,从这些公理中推导出关于人类行为的定理 . 41机动 目录 上页 下页 返回 结束 2( )SKdAS 如果有所谓的数学头脑的话如果有所谓的数学头脑的话,那么边沁那么边沁(Jer
28、emy Bentham,1748年年1832年年, 英国的法理学家、功利主义英国的法理学家、功利主义哲学家哲学家 )就具有这种有头脑就具有这种有头脑. 也的思维逻辑性最强也的思维逻辑性最强, 而且而且一丝不苟一丝不苟 . 在其伦理学漫长发展的新阶段,边沁再现了当时十在其伦理学漫长发展的新阶段,边沁再现了当时十分流行的观点,并且对它作了适当的解释。随后,他通分流行的观点,并且对它作了适当的解释。随后,他通过引进数学概念开始探讨结论并进行修正。他的目标是过引进数学概念开始探讨结论并进行修正。他的目标是衡量快乐与痉痛苦并使衡量快乐与痉痛苦并使“快乐达到最在限度快乐达到最在限度”。为了达。为了达到这一
29、目标到这一目标,这个道德世界的牛顿创立了这个道德世界的牛顿创立了“快乐的微积快乐的微积分分” . 边沁关于人性的基本公理边沁关于人性的基本公理: 趋利避害是人类活动潜在的、决定性的客观存在趋利避害是人类活动潜在的、决定性的客观存在. 42机动 目录 上页 下页 返回 结束 2( )SKdAS 以边沁为代表的伦理学家们成功地完成了基本的规以边沁为代表的伦理学家们成功地完成了基本的规划划. 他们利用人性的规律和人与人之间相互关系的公理他们利用人性的规律和人与人之间相互关系的公理, 创建了富于逻辑性的伦理体系创建了富于逻辑性的伦理体系. 政治学家们也开始仿效政治学家们也开始仿效他们他们. 在休谟充满
30、信心的在休谟充满信心的“政治可以简化成一门科学政治可以简化成一门科学”的诊断的激发下的诊断的激发下, 他们为自己的学科寻求公理他们为自己的学科寻求公理 . 对政府本质所作的上述探讨对政府本质所作的上述探讨,回答了下列一系列问题回答了下列一系列问题: 为什么政府会存在?它从哪里获得了权力为什么政府会存在?它从哪里获得了权力? 它在什么它在什么情况下超出了这一权力?如何对待暴政?情况下超出了这一权力?如何对待暴政?43机动 目录 上页 下页 返回 结束 2( )SKdAS 最简明扼要地表述洛克这一关于政府的哲学最简明扼要地表述洛克这一关于政府的哲学, 对政对政府所持的态度最具有理性化的是要算是十八
31、世纪一份府所持的态度最具有理性化的是要算是十八世纪一份“数学性数学性”的文件的文件. 这份文件就是著名的美国独立这份文件就是著名的美国独立宣言宣言(The Declaration of Independence), 它引用了许它引用了许多洛克的话多洛克的话: 44机动 目录 上页 下页 返回 结束 2( )SKdAS “我们坚信这些不言而喻的真理:我们坚信这些不言而喻的真理:人人生面平等人人生面平等,他们都从他们的他们都从他们的“造物主造物主”那里被赋予了某些不可转让那里被赋予了某些不可转让的权利,其中包括生命权、自由权和追求幸福的权利的权利,其中包括生命权、自由权和追求幸福的权利。为了保障这
32、些权利,所以才在人们中间成立政府。而政为了保障这些权利,所以才在人们中间成立政府。而政府的正当权利,系得自被统治者的同意。如果遇有任何府的正当权利,系得自被统治者的同意。如果遇有任何一种形式的政府变成是损害这些目的的,那么,人民就一种形式的政府变成是损害这些目的的,那么,人民就有权利来改变它或废除它,以建立新的政府。这新的政有权利来改变它或废除它,以建立新的政府。这新的政府,必须是建立在这样的原则基础上,并且是按照这样府,必须是建立在这样的原则基础上,并且是按照这样的方式来组织它的权力机关,就是人民看来那是最能够的方式来组织它的权力机关,就是人民看来那是最能够促进他们的安全和幸福的。促进他们的
33、安全和幸福的。”45机动 目录 上页 下页 返回 结束 2( )SKdAS 我们注意到,这份文件以不言而喻的真理作为论证我们注意到,这份文件以不言而喻的真理作为论证的开头,这些真理与作为任何数学体系基础的不证自明的开头,这些真理与作为任何数学体系基础的不证自明的公理有同等的作用的公理有同等的作用. 新的经济学遵循政治学和伦理学中的理性的、渗透新的经济学遵循政治学和伦理学中的理性的、渗透着数学思想的方法,它的基础仍然是人的本性的科学着数学思想的方法,它的基础仍然是人的本性的科学. 经济学本身的公理与人的本性的科学相结合,由此得到经济学本身的公理与人的本性的科学相结合,由此得到一些推论一些推论 .
34、 46机动 目录 上页 下页 返回 结束 2( )SKdAS 十八世纪有两个主要的经济学派别,一个是由弗朗十八世纪有两个主要的经济学派别,一个是由弗朗斯瓦斯瓦魁奈魁奈(Francois Quesnay, 1694年年1774年年)创立的创立的重农学派,另一个是由亚当重农学派,另一个是由亚当斯密斯密(Adam Smith, 1723年年1790年,经济学鼻祖年,经济学鼻祖)以及后来的约翰以及后来的约翰斯图亚特斯图亚特穆穆勒勒 (John Stuart Mill, 1806年年1873年年)领导的古典学派。领导的古典学派。他们都他们都承认公理性的经济真理的确存在承认公理性的经济真理的确存在着。他们
35、也都认着。他们也都认为为永恒不变的经济规律是自然现象永恒不变的经济规律是自然现象。因此,完全有可能。因此,完全有可能创立一门有关财富的科学。经济学家必须探索和揭示经创立一门有关财富的科学。经济学家必须探索和揭示经济规律济规律 . 47机动 目录 上页 下页 返回 结束 2( )SKdAS 这两个学派所陈述的公理对我们来说是非常熟悉的这两个学派所陈述的公理对我们来说是非常熟悉的, 并且直到今天,仍然是大多数人的主要观点并且直到今天,仍然是大多数人的主要观点. 每个人都每个人都按照自己的利益行事。按照自己的利益行事。人人都享有自由、财产和安全的人人都享有自由、财产和安全的权利,以及土地和劳动力是财
36、富的唯一来源权利,以及土地和劳动力是财富的唯一来源,这些都是,这些都是当时的公理当时的公理 . 48机动 目录 上页 下页 返回 结束 2( )SKdAS 中国在春秋战国时期也有百家争鸣的学术风气中国在春秋战国时期也有百家争鸣的学术风气, 但是但是没有实行古希腊统治者之间的民主政治没有实行古希腊统治者之间的民主政治, 而是实行君王而是实行君王统治制度统治制度. 春秋战国时期春秋战国时期, 也是知识分子自由表达见解的也是知识分子自由表达见解的黄金年代黄金年代. 当时的思想家和数学家当时的思想家和数学家, 主要目标是主要目标是帮助君王帮助君王统治臣民、管理国家统治臣民、管理国家. 因此因此, 中国
37、的古代数学中国的古代数学, 多半以多半以“管理数学管理数学”的形式出现的形式出现, 目的是为了丈量田亩、兴修目的是为了丈量田亩、兴修水利、分配劳力、计算税收、运输粮食等国家管理的实水利、分配劳力、计算税收、运输粮食等国家管理的实用目标用目标. 理性探讨在这里退居其次理性探讨在这里退居其次. 因此因此, 从文化意义上从文化意义上看看, 中国数学可以说是中国数学可以说是“管理数学管理数学”和和“木匠数学木匠数学”, 存在的形式则是官方的文书存在的形式则是官方的文书 .49机动 目录 上页 下页 返回 结束 2( )SKdAS 古希腊的文化时尚古希腊的文化时尚, 是追求精神上享受是追求精神上享受,
38、以获得对以获得对大大自然的理解自然的理解为最高目标为最高目标. 因此因此, “对顶角相等对顶角相等”这样的这样的命题命题, 在在几何原本几何原本里列入命题里列入命题15, 借助公理借助公理3(等量减等量减等量等量, 其差相等其差相等)给予证明给予证明. 在中国的数学文化里在中国的数学文化里, 不可能不可能给这样的直观命题留下位置给这样的直观命题留下位置 .本教程的视角是:本教程的视角是: 本教程本教程数学史与数学文化数学史与数学文化, 从自然哲学的角度阐从自然哲学的角度阐述数学的文化价值述数学的文化价值, 特别指出数学对人类文化的影响特别指出数学对人类文化的影响, 以以及在一定文化背景下数学的
39、发展进程及在一定文化背景下数学的发展进程 .50机动 目录 上页 下页 返回 结束 2( )SKdAS本教程的结构是:本教程的结构是: 数学文化数学文化 从属于自然哲学的数学文化从属于自然哲学的数学文化 自由数学时代的数学文化自由数学时代的数学文化 中华特色的数学文化中华特色的数学文化 人的本性的科学的数学文化人的本性的科学的数学文化 数学鉴赏数学鉴赏 51机动 目录 上页 下页 返回 结束 2( )SKdAS本教程的内容是:本教程的内容是: 第一章第一章 数学的发展历程数学的发展历程 第一节第一节 数学名称的起源数学名称的起源 第二节第二节 数学的定义数学的定义 第三节第三节 数学发展的几个
40、主要阶段及其特征数学发展的几个主要阶段及其特征 第二章第二章 对自然界数学设计的信念对自然界数学设计的信念 第一节第一节 数学设计信念的形成数学设计信念的形成 第二节第二节 数学设计信念的发展数学设计信念的发展 第三节第三节 数学设计信念的结晶数学设计信念的结晶 52机动 目录 上页 下页 返回 结束 2( )SKdAS第三章第三章 自然的萧声自然的萧声 第一节第一节 乐音的基本概念乐音的基本概念 第二节第二节 天体的音乐天体的音乐 第三节第三节 数学与音乐的关系数学与音乐的关系 第四节第四节 音律的确定音律的确定 第五节第五节 梅森频率定律梅森频率定律 第六节第六节 傅里叶分析傅里叶分析 第
41、四章第四章 自由的数学自由的数学 第一节第一节 里程碑事件:微积分的发现里程碑事件:微积分的发现 第二节第二节 英雄的世纪:数学的爆炸式扩张英雄的世纪:数学的爆炸式扩张 第三节第三节 形而上学的基础形而上学的基础 第四节第四节 作为人的自由创造物的数学作为人的自由创造物的数学 53机动 目录 上页 下页 返回 结束 2( )SKdAS第五章第五章 人的本性的科学的数学原理人的本性的科学的数学原理 第一节第一节 人的本性的科学是演绎科学人的本性的科学是演绎科学 第二节第二节 伦理学的数学原理伦理学的数学原理 第三节第三节 政治学的数学原理政治学的数学原理 第四节第四节 经济学的数学原理经济学的数
42、学原理 第六章第六章 新几何新几何, 新世界新世界 第一节第一节 几何学的起源和几何学的起源和几何原本几何原本 第二节第二节 试证第五公设试证第五公设 第三节第三节 非欧几何的创立和发展非欧几何的创立和发展 第四节第四节 非欧几何的技术性内容非欧几何的技术性内容 54机动 目录 上页 下页 返回 结束 2( )SKdAS第七章第七章 中华特色的数学文化中华特色的数学文化 第一节第一节 中国数学的发展历程中国数学的发展历程 第二节第二节 中国数学的大一统特征中国数学的大一统特征 第三节第三节 中国数学的功利性特征中国数学的功利性特征 第八章第八章 美的世界美的世界 第一节第一节 美的历程美的历程
43、 第二节第二节 数学美数学美 第三节第三节 自然美自然美 第九章第九章 数学欣赏数学欣赏 55机动 目录 上页 下页 返回 结束 2( )SKdAS数学浪漫数学浪漫: 笛卡尔的爱情故事笛卡尔的爱情故事 斯德哥尔摩的街头斯德哥尔摩的街头, 52岁的笛卡尔邂逅了岁的笛卡尔邂逅了18岁的瑞典岁的瑞典公主克里斯汀公主克里斯汀 . 那时那时, 落魄、一文不名的笛卡尔过着乞讨的生活落魄、一文不名的笛卡尔过着乞讨的生活, 全全部的财产只有身上穿得破破烂烂的衣服和随身所带的几部的财产只有身上穿得破破烂烂的衣服和随身所带的几本数学书籍本数学书籍 . 一个宁静的午后一个宁静的午后, 笛卡尔照例坐在街头笛卡尔照例坐在街头. 突然突然, 有人来有人来
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度旅游意外受伤赔偿协议书范本2篇
- 乳腺癌患者蒙医饮食起居治疗方案研制及疗效观察
- 《儒林外史》 上课课件
- 面向自动调制识别模型的后门攻击方法研究
- 应急指挥系统的改进与优化
- 熟人借款合同三篇
- 2025版夏令营拓展训练项目代理商合作协议范本3篇
- 二零二五年度行政合同订立实务操作与案例分享3篇
- 二零二五年版个人股东股权转让协议范本适用于所有企业股权变更19篇
- 二零二五年度品牌授权销售系统合同样本2篇
- 政治-湖北省湖部分名校(云学名校联盟)2025届高三1月联考试题和答案
- 2025年春新沪科版物理八年级下册全册教学课件
- 2025年国家广播电视总局监管中心招聘5人高频重点提升(共500题)附带答案详解
- 2024年山东省淄博市中考英语试题(含答案)
- 2025届高考语文复习:散文的结构与行文思路 课件
- 电网调度基本知识课件
- 拉萨市2025届高三第一次联考(一模)语文试卷(含答案解析)
- 环境与职业健康安全管理手册
- 《保密法》培训课件
- 回收二手机免责协议书模板
- 注射泵操作使用课件
评论
0/150
提交评论