版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1一、知识要点勾股定理勾股定理2 例:在RtABC中,C=90. (1)若a=3,b=4,则c= ; (2)若c=34,a:b=8:15,则 a= ,b= ;51630ABCabc3通过在方格纸上计算面积的方法探索勾股定理通过在方格纸上计算面积的方法探索勾股定理abcabcSA+SB=SCa2+b2=c24图(图(1)图(图(2)通过拼图的方法验证勾股定理通过拼图的方法验证勾股定理5勾股逆定理勾股逆定理 6 1.已知三角形的三边长为已知三角形的三边长为 9 ,12 ,15 ,则这个三角形的最大角是则这个三角形的最大角是 度度;2.若若ABC中中 ,AB=5 ,BC=12 ,AC=13 ,则则A
2、C边上的高长为边上的高长为 ;例例29060137, , ,5 2 3,ABCABCa b cCBAABCABC 2222中,的对边分别是下列判断错误的是( )A.如果则 ABC是直角三角形B.如果c =b -a ,则 ABC是直角三角形,且 C=90C.如果(c+a)(c-a)=b ,则 ABC是直角三角形D.如果: :则是直角三角3B8勾股数勾股数9 勾股数:勾股数: (1)3、4、5;(;(2)5、12、13 (3)6、8、10(4)7、24、25 (3) 8、15、17(6)9、12、15101. 如图,正方形网格中的如图,正方形网格中的ABC,若若小方格边长为小方格边长为1,则,则A
3、BC是(是( )(A)直角三角形直角三角形 (B)锐角三角形锐角三角形 (C)钝角三角形钝角三角形 (D)以上答案都不对以上答案都不对 ABC练习练习112. 在在ABC中,中,AB=13,AC=20,高高AD=12, 则则BC的长为的长为CA20B13D12165AC20B13D1251621或或1112例例4 .4 .观察下列表格:观察下列表格:列举列举猜想猜想3 3、4 4、5 53 32 2=4+5=4+55 5、1212、13135 52 2=12+13=12+137 7、2424、25257 72 2=24+25=24+251313、b b、c c13132 2=b+c=b+c请你
4、结合该表格及相关知识,求出请你结合该表格及相关知识,求出b b、c c的值的值. .即即b=b= ,c=c=_ _ 848513例例5、如图,四边形、如图,四边形ABCD中,中,AB3,BC=4,CD=12,AD=13, B=90,求四,求四边形边形ABCD的面积的面积DBAC34121314变式变式 有一块田地的形状和尺寸有一块田地的形状和尺寸如图所示,试求它的面积。如图所示,试求它的面积。121334ABCD515例6、假期中,王强和同学到某海岛上去玩探宝游戏,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,在折向北走到6千米处往东一拐,仅走1千米就找到宝藏
5、,问登陆点A 到宝藏埋藏点B的距离是多少千米?AB82361MN16 专题一专题一 分类思想分类思想 1.直角三角形中,已知两边长是直角边、直角三角形中,已知两边长是直角边、斜边不知道时,应分类讨论。斜边不知道时,应分类讨论。 2.当已知条件中没有给出图形时,应认真当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。读句画图,避免遗漏另一种情况。17 2.三角形三角形ABC中中,AB=10,AC=17,BC边上边上的高线的高线AD=8,求求BCDDABC 1.已知已知:直角三角形的三边长分别是直角三角形的三边长分别是 3,4,X,则则X2=25 或或7ABC101781710818
6、 专题二专题二 方程思想方程思想 直角三角形中,当无法已知两边求第三直角三角形中,当无法已知两边求第三边时,应采用间接求法:灵活地寻找题中边时,应采用间接求法:灵活地寻找题中的等量关系,利用勾股定理列方程。的等量关系,利用勾股定理列方程。191.小东拿着一根长竹竿进一个宽为米的小东拿着一根长竹竿进一个宽为米的城门,他先横拿着进不去,又竖起来拿,城门,他先横拿着进不去,又竖起来拿,结果竹竿比城门高米,当他把竹竿斜着结果竹竿比城门高米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竹竿长时,两端刚好顶着城门的对角,问竹竿长多少?多少?x1m(x+1)3202.在一棵树的在一棵树的10米高处米高处B有
7、两只猴子,有两只猴子,其中一只猴子爬下树走到离树其中一只猴子爬下树走到离树20米的米的池塘池塘A,另一只猴子爬到树顶,另一只猴子爬到树顶D后直接后直接跃向池塘的跃向池塘的A处,如果两只猴子所经过处,如果两只猴子所经过距离相等,试问这棵树有多高?距离相等,试问这棵树有多高?.DBCA21 专题三专题三 折叠折叠 折叠和轴对称密不可分,利用折叠前后折叠和轴对称密不可分,利用折叠前后图形全等,找到对应边、对应角相等便可图形全等,找到对应边、对应角相等便可顺利解决折叠问题顺利解决折叠问题22例例1、如图,一块直角三角形的纸片,两如图,一块直角三角形的纸片,两直角边直角边AC=6,BC=8。现将直角边。
8、现将直角边AC沿直线沿直线AD折叠,使它落在斜边折叠,使它落在斜边AB上,上,且与且与AE重合,求重合,求CD的长的长 ACDBE第8题图x6x8-x46823练习练习:三角形三角形ABC是等腰三角形是等腰三角形AB=AC=13,BC=10,将,将AB向向AC方向方向对折,再将对折,再将CD折叠到折叠到CA边上,折痕边上,折痕CE,求三角形求三角形ACE的面积的面积ABCDADCDCAD1E13512512-x5xx824例例2:折叠矩形折叠矩形ABCD的一边的一边AD,点点D落在落在BC边上的点边上的点F处处,已知已知AB=8CM,BC=10CM,求求 1.CF 2.EC.ABCDE F81
9、010X8-X48-X625 1. 几何体的表面路径最短的问题,一般展几何体的表面路径最短的问题,一般展开表面成平面。开表面成平面。 2.利用两点之间线段最短,及勾股定理利用两点之间线段最短,及勾股定理求解。求解。 专题四专题四 展开思想展开思想26例例1:1:如图如图, ,一圆柱高一圆柱高8cm,8cm,底面半径底面半径2cm,2cm,一只蚂蚁从点一只蚂蚁从点A A爬到点爬到点B B处吃食处吃食, ,要爬行的最短路程要爬行的最短路程( ( 取取3 3)是)是( ) ( ) A.20cm B.10cm C.14cm D.A.20cm B.10cm C.14cm D.无法确定无法确定 BB8OA
10、2蛋糕ACB周长的一半周长的一半27例例2 如图:正方体的棱长为如图:正方体的棱长为cm,一,一只蚂蚁欲从正方体底面上的顶点只蚂蚁欲从正方体底面上的顶点A沿正沿正方体的表面到顶点方体的表面到顶点C处吃食物,那么它处吃食物,那么它需要爬行的最短路程的长是多少?需要爬行的最短路程的长是多少?ABCDABCD1628例例3,3,如图是一个三级台阶,它的每一级的长宽和高分别为如图是一个三级台阶,它的每一级的长宽和高分别为20dm20dm、3dm3dm、2dm,A和和B是这个台阶两个相对的端点,是这个台阶两个相对的端点,A点有一只蚂蚁,想到点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿点去吃可口的食物,
11、则蚂蚁沿着台阶面爬到着台阶面爬到B点最短路程是多少?点最短路程是多少?20203 32 2AB32323 AB2=AC2+BC2=625, AB=25.29例例4:.如图,长方体的长如图,长方体的长为为15 cm,宽为,宽为 10 cm,高为高为20 cm,点,点B离点离点C 5 cm,一只蚂蚁如果要沿着一只蚂蚁如果要沿着长方体的表面从点长方体的表面从点 A爬爬到点到点B,需要爬行的最,需要爬行的最短距离是多少?短距离是多少? 1020BAC15530BAC1551020B5B51020ACEFE1020ACFAECB201510531 1. 几何体的内部路径最值的问题,一般画几何体的内部路径
12、最值的问题,一般画出几何体截面出几何体截面 2.利用两点之间线段最短,及勾股定理利用两点之间线段最短,及勾股定理求解。求解。 专题五专题五 截面中的勾股定理截面中的勾股定理32小明家住在小明家住在18层的高楼,一天,他与妈妈去买竹竿。层的高楼,一天,他与妈妈去买竹竿。买最长买最长的吧!的吧!快点回家,快点回家,好用它凉衣好用它凉衣服。服。糟糕,太糟糕,太长了,放长了,放不进去。不进去。如果电梯的长、宽、高分别是如果电梯的长、宽、高分别是1.5米、米、1.5米、米、2.2米,那么,米,那么,能放入电梯内的竹竿的最大长度大约是多少米?你能估计出能放入电梯内的竹竿的最大长度大约是多少米?你能估计出小明买的竹竿至少是多少米吗?小明买的竹竿至少是多少米吗?331.5米1.5米2.2米1.5米1.5米xx2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电商平台电子产品促销季合作协议3篇
- 2024版商业地产投资合作协议范本二零二四年度3篇
- 医学流行病学思维导图
- 农贸市场租赁合同范例
- 欠款合同范例私人
- 2024年标准土石方工程车辆运输服务合同版
- 2024年塑料家居用品设计与制造合同范本2篇
- 2024年度婚礼摄影与爱情故事记录服务合同3篇
- 2024年旅游服务与管理外包合同
- 2024年版综合能源管理服务协议模板版B版
- Office办公软件应用(Office2010)中职全套教学课件
- 子痫应急预案
- 数控加工理实一体化建设方案
- 员工计件工价调整通知范本
- 岗位价值评估表
- 中考作文指导作文“读你”写作指导课件
- 寻猫启事标准范文
- DB51T3062-2023四川省高标准农田建设技术规范
- 轮毂产品设计参考手册2007
- 中国姓氏名字文化
- 2023年成都市生物毕业会考知识点含会考试题及答案
评论
0/150
提交评论