第三章金产定价和衍生品_第1页
第三章金产定价和衍生品_第2页
第三章金产定价和衍生品_第3页
第三章金产定价和衍生品_第4页
第三章金产定价和衍生品_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 期权定价理论及其应用期权定价理论及其应用4期权定价的技巧被广泛的应用到许多金融领域和非金融领域,包括各种衍生证券定价、公司投资决策等。4学术领域内的巨大进步带来了实际领域的飞速发展。期权定价的技巧对产生全球化的金融产品和金融市场起着最基本的作用。4近年来,从事金融产品的创造及定价的行业蓬勃发展,从而使得期权定价理论得到不断的改进和拓展。4所以,无论从理论还是从实际需要出发,期权定价的思想都具有十分重要的意义。1. 一些基本定义一些基本定义4例子:投资者B和W计划签定一份合同:现在B支付给W 200元,交换条件是在接下来的六个月的任何时间,允许B自愿从W那里以150元/股的价格购买100股IB

2、M公司股票。IBM公司股票现在的价格为145元/股。问题: B和W为什么都愿意签定这个合同? B如果不支付给W 200元,W是否愿意签定这个合同?4例子:投资者B和W计划签定一份合同:现在B支付给W 200元,交换条件是在接下来的六个月的任何时间,允许B可自愿以135元/股的价格卖给W 100股IBM公司股票。 IBM公司股票现在的价格为145元/股。问题: B和W为什么都愿意签定这个合同? B如果不支付给W 200元,W是否愿意签定这个合同?4看涨期权、看跌期权4一种期权具有四个特征: 1)这种期权能够买(对于看涨期权而言)或者卖(对于看跌期权而言)的对象,或者说,合约是关于哪种资产的合约,

3、我们称这种资产为标的物标的物(underlying asset)。 以股票为标的物的期权,每份期权通常包括100份特定的股票。例如,持有一份以IBM公司股票为标的物的看涨期权,是一份可以买100份IBM公司股票的权利。 2)执行价格)执行价格(exercise price, 或者strike price)。 这个价格是执行期权合约时,可以以此价格购买标的物的价格。对于以IBM公司股票为标的物的看涨期权,如果执行价格为150美元,则在执行这种期权时,按每份股票150美元购买。 3)期权有效的时间区间由到期日)期权有效的时间区间由到期日(expiration date)来确定。 这段时间区间可以是

4、一天、一个星期、或者一年。以IBM公司股票为标的物的看涨期权,如果到期日为六个月,则在这六个月里,这份权利都是有效的。 4)期权应该包括是否可以在到期日之前执行这种权利。 如果在到期日之前的任何时间以及到期日都能执行,我们称这种期权为美式期权美式期权。如果只能在到期日执行,称为欧式期权欧式期权。 美式和欧式这两个名词曾代表了以股票为标的物的期权在美洲和欧洲的结构形式。但是现在,它们已成为反映两种不同结构的期权的标准名词,而不管期权是在哪儿发行的。4看涨期权(call option)、看跌期权(put option)、鞍式期权(straddle option)、蝶式期权(butterfly sp

5、read option)、实值期权(in the money option)、两平期权(at the money option)、虚值期权(out of the money option)4所有合约都是由看涨期权、看跌期权、股票和债券四种基本证券构成地。4 期权的这四个特征标的物、是看涨还是看跌、执行价格、到期日(包括是美式还是欧式)说明了一种期权的各个细节。4期权是两人之间的一种合约,其中的一人给予另外一人在规定的一段时间内,可以以规定的价格买或者卖某种规定的资产的权利。4获得权利的一方需要做出是否接受该权利的决定,我们称这一方为期权的买者期权的买者(option buy),因为他需要付钱来

6、获得这种权利。4提供权利的一方称为期权的写者期权的写者(option writer)。4例如,欧式看涨期权是一种证券,这种证券给出了期权持有者在到期日以执行价格购买标的物的权利。4何时买看涨期权,何时买看跌期权?4既然期权的持有者获得的是权利而不需要承担什么义务,他就必须花钱购买这个权利,那么,公平的价格应该是多少?这是证券投资学研究的重要内容。2 影响欧式期权价格的因素影响欧式期权价格的因素4如何确定以金融证券为标的物的欧式期如何确定以金融证券为标的物的欧式期权的价格。权的价格。4假设:如果无特殊说明,标的物在到期假设:如果无特殊说明,标的物在到期日以前不支付红利。日以前不支付红利。4期权理

7、论之所以重要,不仅仅因为期权在证券市场结构中具有重要的作用,也因为期权理论说明了投资学的基本原理被提高到了一个新的水平在以动态结构为基本结构的经济环境中应用这些原理。4假设一种欧式看涨期权,它以某种股票为标的物,该股票在时间 t 的价格以 表示,期权的执行价格为 ,到期日为 ,期权在时间 t 的价格为 。tSKTtc4第一,在到期日 T,期权的价值为多少。 1) 2) 把期权在 T 时的价格显示地表示成股票价格的函数。这个函数如下图所示。该图说明当 ,期权的价值为零,当 时,期权的价值随着股票价格的增加而线性增加。 期权不可能有负的价值,责任有限金融工具。KSTKST KSKScTTT, 0m

8、axKSTKST 图1:看涨期权在到期日的收益TSKTc4对于欧式看跌期权而言,上述结果正好反过来。假设一种看跌期权,它以某种股票为标的物,该股票在时间 t 的价格以 表示,期权的执行价格为 ,到期日为 T,期权在时间 t 的价格为 tSKtp4在到期日 T,期权的价值。 1) 2) 把期权在 T 时的价格显示地表示成股票价格的函数。 这个函数如下图所示。该图说明当 ,期权的价值为零,当 时,期权的价值随着股票价格的增加而线性减少。KSTKST TTTSKSKp, 0maxKSTKSTTSKp 图图2 看跌期权在到期日的收益4注意,看跌期权在 时的价值是有界的,而看涨期权在 时的价值是无界的。

9、TT4 对于看涨期权而言,如果分别有 、 ,则称一份看涨期权分别为实值期权实值期权(in the money option)、两平期两平期权权(at the money option)、虚值期权虚值期权(out of the money option)。这些名称适用于任何时间,但在到期日,这些名称描述了期权价值的特征。对于看跌期权,我们也有类似的名称。KSTKSTKST4第二,期权的时间价值。 即使在到期日以前的任何时间,欧式期权均有价值,因为它提供了将来执行权利的可能性。 例如,以GM公司股票为标的物的一种期权,其执行价格为40美元,到期日为三个月。假设GM公司股票现在的价格为37美元。显然

10、,在接下来的三个月中,该股票的价格有可能上涨而超过40美元,从而有执行该期权而获得利润的可能。从这儿可以看出,即使现在期权是虚值的,它也具有价值。4在到期日以前的任何时间 t ,这里 ,作为股票价格的函数,欧式看涨期权的价格 是 t 时股票价格 的光滑函数,其图形如图3所示。Tt )(ttSctS 6个月 3个月 图3 具有不同到期日的 期权价格曲线tS)(ttSc时间价值4这条光滑曲线可以利用历史的实际数据,通过回归分析来得到。在图中,粗的折线表示在到期日,期权的价格曲线。这条线上面的曲线对应于到期日不同的期权的价格曲线。在粗折线上的第一条对应的到期日为三个月,紧接着的一条曲线对应的到期日为

11、六个月,到期日越长的曲线越在上面。这表明,在到期日以前的任何时间,对于同一股票价格,到期日越长的期权,其价格越高。这是因为,到期日越长,标的股票价格上扬,从而增加最后支付的可能性越大。4当股票的价格远远大于或者小于执行价格时,随着到期日的增加,期权价格增加的幅度越来越小。 当股票的价格远远大于执行价格时,持有期权并不比持有股票占多大的优势。 当股票的价格远远小于执行价格时,股票价格上涨超过的可能性很小,从而期权的价格为零。4第三,还有哪些因素影响期权的价格? 1)执行价格 从(1)和(2)式可以看出,一种看涨期权,其执行价格越小,股票价格超过的可能性就越大,这种看涨期权也就越有价值。对于看跌期

12、权,结果正好相反。 2)标的股票价格的方差 在投资的过程中,投资者偏好以方差较大的股票为标的物的期权。方差越大,股票价格超过执行价格的概率越大,这种期权对投资者也就越有价值。 假设有两种期权,具有相同的执行价格,但标的股票价格的分布不同,如图4,这两个分布的期望值相同,方差不同。我们偏好于哪一种期权? 图4 股票价格的分布S Sf 因为只有当股票的价格大于执行价格时,我们才能从期权合约中获得收益。股票价格分布的方差越大,股票价格超过执行价格的概率也就越大,我们获得收益的概率也就越大。所以,我们偏好以方差较大的股票为标的物的期权。 期权的价值与标的资产的价值之间的重大差别:如果持有标的资产,我们

13、获得收益的可能性由标的资产价格的整个概率分布决定。作为风险厌恶者,我们不喜欢高风险。如果我们持有期权,我们获得收益的可能性由标的资产价格的尾部概率分布决定。期权的这种性质使得大的方差更具有吸引力。4例子:假设某家公司得到一笔长期贷款,每年应支付的利息为8000元。该公司可以把这笔贷款用于下面两个项目中的一个。这两个项目具有相同的5000元的期望现金流。4 项目1 项目24概率 现金流 概率现金流40.2 4,0000.4040.6 5,0000.25,00040.2 6,0000.410,000 如果投资到第一个项目,该公司将破产,因为所有可能的现金流都比偿还利息所需的8000元少。 由于第二

14、个项目的方差较大,所以有40%的机会,除能够偿还利息外,还有2000元的剩余。显然,该公司将选择第二个项目。尽管它的风险更大,但是存在40%的机会给公司带来正的利润。 这个例子形象地说明了期权的持有者为什么更偏好大的方差。同时,这个例子也引入了一种重要的观点。一个公司的股东实际上是一种期权的持有者,这种期权以公司的市场值为标的物。当公司的市场值比它所需偿还的债务低时,公司破产。这时,股东允许期权到期而不执行,股东所持有的股票的价值为零;股东把公司移交给债权人,债权人获得公司作为补偿。当公司的市场值比它所需偿还的债务高时,股东执行期权,偿还债权人的债务后,股东获得剩余的利润。 3)无风险利率。

15、在所有的因素里,这个因素是最不直观的。一般说来,无风险利率越大,执行价格的现值也就越小,这样的期权也就越有价值。而且,当市场处于均衡状态时,无风险利率越大,股票的回报率也应该越高。从而,在到期日,股票的价格也应该越高,这时,期权的价格也应该越高。 在确定欧式看涨期权的价格时,有五种因素是重要的:标的资产的价格,期权的执行价格,标的资产价格的方差,到期日(实际应该是剩下的到期时间),以及无风险利率。把欧式看涨期权的价格写成如下的函数形式: (3)fttrtTKSfc,23 期权定价理论期权定价理论二项式方法二项式方法4二项分布方法二项分布方法 在应用这种方法时,最重要的是套期保值套期保值的概念。

16、4假设1:标的股票不支付红利。4假设2:证券市场是无摩擦的和完全竞争的,且不存在套利机会。4假设3:投资者是理性的。4假设4:市场存在无风险资产,其利率是固定的。4假设5:无卖空限制。4A. 以股票为标的物的看涨期权的简单二项模型 标的股票的价格服从二项分布产生的过程:4 4 图9 一期二项式生成过程SuSdSqq14这里 =股票现在的价格 =股票价格上涨的概率 =一期的无风险利率 =股票价格上涨的幅度 =股票价格下跌的幅度Sqfrud4例子:4 420S24uS4 .13dSqq11 . 0fr21K2 . 1u67. 0d4注:对 的假设,在这个假设之下,不管经过多少期,股票的价格永远不会

17、跌到零以下。但是,对股票价格上涨的界没有限制。 d4每期的无风险利率为 。对 的限制为 ,这是无套利条件。直观地可以看出,无论是 (这时,无风险利率总比股票的风险回报率高)还是 (这时,无风险利率总比股票的风险回报率低),都存在套利机会。不失一般性,假设 。 frfrdruf1durf1frdu10fr4以股票为标的物的欧式看涨期权,执行价格为 ,到期日为一期,它的现价以 表示。该期权在到期日的支付如下图4 4 图10 欧式看涨期权的支付 Kcqq1cKuScu, 0maxKdScd, 0max 构造无风险套期保值证券组合:以价格 买一份股票,写 份以股票为标的物的看涨期权( 称为套期保值比率

18、)。下图说明了这个套期保值证券组合的到期支付。如果这个套期保值证券组合在每种状态下的到期支付都相等,则这个证券组合是无风险的。 图11 套期保值证券组合的到期支付 Smmqq1mcSumcuSdmcdS 4让支付相等,得到: 4 = 4从上式中解出看涨期权的份数 : 4 (21)4把例子里的数字代入,得到 =3.53 4因此,无风险套期保值证券组合包括买一份股票,写3.53份看涨期权。在两个状态下的支付相等,如下表:不确定状态 证券组合 支付 好状态 1.2(20元)-3.53(3元)=13.40元 坏状态 0.67(20元)-3.53(0元)=13.40元 umcuSdmcdSmduccdu

19、SmmumcuSdmcdS4因为套期保值证券组合是无风险的,它的终端支付应该等于它的现价乘以 ,即,从这个式子得出期权的价格: 4 (22)4设4则fr1ufmcuSmcSr1ffdfurdurucdudrcc111dudrPf1duruPf114fdurpcpcc114这里定义 的总是大于0而小于1,具有概率的性质,我们称之为套期保值概率套期保值概率。4从 的定义可以看出,无套利条件 成立当且仅当 大于0而小于1(即,保证 是概率)。PPdruf1PP4 是当市场达到均衡时,风险中性者所认为的 值,即,股票价格上涨的概率。作为风险中性者,投资者仅仅需要投资在风险股票上的回报率为无风险利率:4

20、从中解出值,得到:4所以,对一个风险中性者来说, = ,而(24)式中看涨期权的价格可以解释为,在一个风险中性环境中,期权的期望终端支付的折现值。 PqdSqquSSrf)1 (1dudrqf1Pq4在求得看涨期权价格的过程中,有两点是至关重要的: 套期保值证券组合的存在性; 无风险的套期保值证券组合的的回报率为无风险利率。 4 看涨期权的定价公式具有以下三个有趣的特征:1该公式不依赖于股票价格上涨的概率。这使得,即使投资者对预期不一致,只要他们对别的参数的估计一致(包括 ),他们就会有一样的定价公式。2该公式的获得不依赖个体对风险的偏好。所需的假设仅仅只是无套利。3该公式依赖的唯一随机变量是

21、标的股票。(例如,与市场证券组合无关)frKSdu,4B. 两期模型4 图12 股票价格Sqq1uSdSudSSu2Sd244 图13 欧式看涨期权的支付 cqq1ucdcduudcc uucddc4假设两期的无风险利率为 。利用一期期权的定价公式(24)得到期权在一期末的价值 和 : 4 (25) 4 (26)21frucdcfuduuurpcpcc11fdddudrpcpcc114把和当作一期模型的终端支付,再一次利用一期期权的定价公式(24)得到期权的现在价格:fdurpcpcc114把(25)和(26)式代入得到: (27)22211)1 (1fddduuduurcppcpcppcpc

22、4可以把(27)式中的分子部分看成是一期模型的定价公式(24)式的分子的二项展开。4(27)式的另外一种解释是,看涨期权的价格等于期权在两期末的期望支付的折现值,这里所用的概率为套期保值概率,折现利用无风险利率。C. 看涨期权定价的完全二项式模型看涨期权定价的完全二项式模型4T期模型 这里TfTnnTnrKSdupTnBc1,0max,0pTanBrKpTanSBTf,1,dudrpf1prupf141. 在0时刻,买 份股票,卖空 份债券所构成的证券组合在到期日的支付,即为以该股票为标的物,以 为执行价格的欧式看涨期权在到期日的支付。以此观点,如果把到期日以前任意的第 t期当作起始时刻,则欧

23、式看涨期权在到期日以前的任意第 t 期的价格为: (32) 4所以,(32)式不但给出了欧式看涨期权在第 t 期的定价公式,而且给出了第 t 期为了模拟欧式看涨期权在到期日的支付所应该采用的策略。 , pTanBpTanKB,KptTanBSctt,ptTanBrKtTf,142从(31)式可以看出,当股票价格 增加,执行价格减少时,期权的价格都会增加。另外,当无风险利率增加时,它的主要影响是减少执行价格的现值,从而增加期权的价格(尽管无风险利率增加时,会导致 p、p 减少,但这种影响是次要的)。0SD. 二项模型推广到连续时间二项模型推广到连续时间Black-Scholes 期权定价模型期权

24、定价模型4在实际操作中应该注意,Black-Scholes期权定价公式仅仅适用于标的股票不支付红利的情形。4连续时间看涨期权定价公式,Black和Scholes(1973): 4 (33)4这里 4 21dNKedNSctTrttftTtTtTrKSdft21ln1tTtTtTrKSdft21ln24连续时间看跌期权定价公式:4这里21dNKedNSptTrttftTtTtTrKSdft21ln1tTtTtTrKSdft21ln2B-S期权定价模型资产价格波动的经典假设,也是被广泛应用的一个假设是资产价格遵循一扩散过程,称其为几何布朗运动,即 ( )( )( )( )19.9dS tS t d

25、tS t dB t() 其中,S(t)为t时刻的资产价格, 为飘移率, 为资产价格的波动率,B(t)遵循一标准的维纳过程。下面引入It引理。It引理:引理:设F(S,t)是关于S两次连续可微,关于t一次可微的函数,S(t)是满足随机微分方程(19.9)的扩散过程,则有以下随机变量函数的It微分公式 212( , )19.10tSSSdF S tFdtF dSF dt() Black-Scholes期权定价模型的一个重要假设是资产价格遵循对数正态分布,即 。将该式与(19.9)式同时代入(19.10)式,有)(ln),(tStSF)()()(ln221tdBdttSd从而有 ttZtStSR) 1()(ln(其中 , 为资产在t期的收益率, 在此过程下, ,且对不同的时间是独立的。令S(0)为0时刻的资产价格,有 (19.13)此刻 。221tR) 1 , 0() 1()(NtBtBZiidt)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论