苏教版九年级数学全册知识点汇总_第1页
苏教版九年级数学全册知识点汇总_第2页
苏教版九年级数学全册知识点汇总_第3页
免费预览已结束,剩余13页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章教学内容:证明二重点:直角三角形,线段垂直平分线与角平分线的证明难点:证明逆命题的真假,角平分线的证明及其对逆命题的理解 易错点:线段的垂直平分线和角平分线的定理及逆定理的判别 第二章教学内容:一元一次方程重点:用配方法,公式法,分解因式法解一元一次方程难点:黄金分割点的理解,用配方法解方程易错点:利用因式分解法和公式法解方程第三章教学内容:证明三重点:特殊的平行四边形的性质与判定,平行四边形的性质与判定 难点:特殊的平行四边形的证明易错点:各定理之间的判别第四章教学内容:视图与投影重点:某物体的三视图与投影难点:理解平行投影与中心投影的区别易错点: 三视图的理解,中心投影与平行投影的区

2、别第五章教学内容: 反比例函数重点: 反比例函数的表达式,反比例函数的图像的概念与性质难点: 反比例函数的运用,猜测,证明与拓展易错点: 主要区别反比例函数与 x 轴和与 y 轴无限靠近 第六章教学内容: 频率与概率定义和命题: 频率与概率的概念难点: 理解用频率去估计概率易错点: 频率是样本中才出现的,概率是整体中出项的苏教版九年级数学上知识点汇总第一章 ?图形与证明二 ?1.1? 等腰三角形的性质定理: ? 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合简称“三线合一。?等腰三角形的两底角相等简称“等边对等角。 ?等腰三角形的判定定理: ? 如果一个三角形的两个角相等,那么这两个

3、角所对的边也相等简称“等角对等边。 ?1.2? 直角三角形全等的判定定理: ? 斜边和一条直角边对应相等的两个直角三角形全等简称“HL。 ?角平分线的性质: ?角平分线上的点到这个角的两边的距离相等。?角平分线的判定: ?角的内部到角的两边距离相等的点,在这个角的平分线上。?直角三角形中, 30°的角所对的直角边事斜边的一半。 ?1.3? 平行四边形的性质与判定: ?定义:两组对边分别平行的四边形是平行四边形。?定理 1:平行四边形的对边相等。 ?定理 2:平行四边形的对角相等。 ?定理 3:平行四边形的对角线互相平分。 ?判定从边: 1 两组对边分别平行的四边形是平行四边形。 ?2

4、 一组对边平行且相等的四边形是平行四边 形。 ?3 两组对边分别相等的四边形是平行四边形。?从角:两组对角分别相等的四边形是平行四边形。 ?对角线:对角线互相平分的四边形是平行四边形。?矩形的性质与判定: ?定义:有一个角的直角的平行四边形是矩形。?定理 1:矩形的 4 个角都是直角。 ?定理 2:矩形的对角线相等。 ?定理:直角三角形斜边上的中线等于斜边的一半。?判定: 1有三个角是直角的四边形是矩形。 ?2 对角线相等的平行四边形是矩形。 ?菱形的性质与判定: ?定理 2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。?判定: 1 四条边都相等的四边形是菱形。 ?2 对角线互相垂直的

5、平行四边形是菱形。 ?正方形的性质与判定: ?正方形的 4 个角都是直角, 4 条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。?正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。?判定: 1有一个角是直角的菱形是正方形。 ?2 有一组邻边相等的平行四边形是正方形。1.4? 等腰梯形的性质与判定 ?定义:两腰相等的梯形叫做等腰梯形。?定理 1:等腰梯形同一底上的两底角相等。?定理 2:等腰梯形的两条对角线相等。?判定: 1在同一底上的两个角相等的梯形是等腰梯形。?2 对角线相等的梯形是等腰梯形。 ?1.5? 中位线 ?三角形的中位线平行于第三边,并且等于第三边的

6、一半。?梯形的中位线平行于两底,并且等于两底的一半。?中点四边形:依次连接一个四边形各边中点所得到的四边形称为中点四边形(中点四边形一定是平行四边形)。 ?原四边形对角线 ? 中点四边形 ?相等 ? 菱形?互相垂直? 矩形 ?相等且互相垂直 ? 正方形 ?第二章 ?数据的离散程度 ?2.1? 极差: ? 一组数据中的最大值与最小值的差叫做极差。计算公式:极差=最大值 - 最小值。 ?极差是刻画数据离散程度的一个统计量,可以反映一组数据的变化范围。一般说,极差越小,那么说明数据的波动幅度越 小。 ?2.2? 方差 ? 各个数据与平均数的差的平均数叫做这组数据的方差,记作S2。?巧用方差公式:?1

7、、根本公式: S2=n1(X1-X )2+(X2-X )2+?+(Xn-X )2?2、简化公式: S2=n1(X12+X22+?+Xn2)-nX 2? 也可写成: S2=n1(X12+X22+?+Xn2)-X 2?3、简化:S2=n1(X ' 12+X' 22+?+X' n2)-nX 2? ?也可写成 :?S2=n1(X' 12+X' 22+?+X' n2)-X2?标准差:?方差的算术平方根叫做这组数据的标准差,记作So ?意义:?1、极差、方差和标准差都是用来描述一组数据波动情况的特征,常用来比拟两组数据的波动大小,我们通常研究的是这组 数据的

8、个数相等、平均数相等或比拟接近的情况。?2、方差较大的波动较大,方差较小的波动较小。?3、方差大,标准差就大,方差小,标准差就小。因此标准差同样反映数据的波动大小。?注意:对两组数据来说,极差大的那一组不一定方差大,反过来,方差大的极差也不一定大。 第三章 ?二次根式 ?3.1? 二次根式 ?定义:一般地,式子(a仝0)叫做二次根式,a叫做被开方数。?有意义条件:当a± 0时,有意义;当a三0时,无意义。?性质:1、仝 0 ( a± 0) ?2、()2=a (a仝 0) ?3、2= I a I =?a (a± 0)a(a<0) ?3.2? 二次根式的乘除法

9、?法那么a V b=Vab(a 仝 0,b 仝 0)?= V( a 仝 0,b >0)化简:V ab=Va V ba 仝 0,b 仝 0?V = a 仝 0,b >0 ?=? a± 0,b >0 ?第四章 ?一元二次方程 ?4.1? 概念: ? 只含有一个未知数,且未知数的最高次数是 2 的整式方程叫做一元二次方程。 ?一般形式是aX2+bX+c=0a、b、c是常数,a工0,其中aX2称为二次项,a称为二次项系数,bX称为一次项,b称为一次项 系数,c称为常数项。?4.2? 解法:?1、直接开平方 ?2、 配方法:先把一元二次方程变形为X+h 2=k的形式其中h,k

10、都是常数,如果0,再通过直接开平方法求出方程 的解?3、 公式法求根公式:一元二次方程aX2+bX+c=0? a工0,当b2-4ac仝0时,它的根是仝0?4、因式分解法 ?根的判别式 ?一元二次方程aX2+bX+c=0? az 0的根的情况可由b2-4ac来判定,因此b2-4ac叫做一元二次方程根的判别式。?当 b2-4ac >0 时,方程有两个不相等的实数根 ?当 b2-4ac=0 时,方程有两个相等的实数根 X1=X2=?当b2-4ac v 0时,方程没有实数根。反之,也成立。?一元二次方程应用题步骤:“设、找、列、解、验、答?第五章 ?中心对称图形二 ?5.1? 圆 ?定义:圆是定

11、点的距离等于定长的点的集合。其中,定点叫做圆心,定长叫做半径。?与圆有关的概念:1、 连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。?2、圆上任意两点间的局部叫做圆弧,简称弧。圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆。大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。?3、定点在圆上的角叫做圆心角。?4、圆心相同,半径不相等的两个圆叫做同心圆。能够互相重合的两个圆叫做等圆。在同圆或等圆中,能够互相重合的弧叫 做等弧。点与圆的位置关系: ?在平面内,点与圆有 3中位置关系:点在圆内,点在圆上,点在圆外。如果设。O的半径为r,点P到圆心O的距离为d,那么“点 P在圆内? dv r;

12、点P在圆上d=r ;点P在圆外d>r 5.2? 圆的对称性 ? 圆是中心对称图形,圆心是对称中心。 ? 圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。?圆心角、弧、弦之间的关系等对等定理: ? 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。5.3? 圆周角 ? 概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。?定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。圆心与圆周角的位置关系分为三种情况:圆心在角的一边上;圆心在角的内部;圆心在角的外部?推论: 1、直径或半圆所对的圆周角是直角。?2、 90°的

13、圆周角对的弦是直径。5.4? 确定圆的条件 ? 条件:不在同一条直线上的三个点确定一个圆 三角形的外接圆: ?三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆。?外接圆的圆心是三角形的三边的垂直平分线的交点,这个点叫做三角形的外心。这个三角形叫做圆的内接三角形 5.5? 直线与圆的位置关系 ?1、 直线与圆有两个公共点时,叫做直线与圆相交。dvr ?2、 直线与圆有唯一的公共点,叫做直线与圆相切,这条直线叫做圆的切线,这个公共点叫做切点。d=r ?3、直线与圆没 有公共点时,叫做直线与圆相离。( d > r) ?直线与圆的位置关系可以用它们的交点的个数来区分,也可以用圆心到直线的 距

14、离与半径的大小关系来区分,它们的结果是一致的。切线的性质与判定: ?判定:经过半径的外端并且垂直于这条半径的直线式圆的切线。?性质:(圆的切线垂直于过切点的半径)?1、?经过圆心且垂直于切线的直接必经过切点。?2、?经过切点且垂直于切线的直线必经过圆心 ?3、?切线与圆只有一个公共点;切线与圆心的距离等于半径;切线垂直于过切点的半径。内心: ?与三角形各边都相切的圆叫做三角形的内切圆。 ?内切圆的圆心叫做三角形的内心,它是三角形的三条角平分线的交点。?这个三角形叫做圆的外切三角形。?5.6? 圆与圆的位置关系 ?性质与判定: ?如果两圆的半径分别为 R和r,圆心距为d,那么?两圆外离d>

15、 R+r?两圆外切d=R+r?两圆相交一> R-r vd< R+r (R>r) ?两圆内切-> d=R-r(R >r)?两圆内含一> 0< d<R-r (R>r) ?连心线的性质: ?圆是轴对称图形,从上表中可以看出它们都是轴对称图形。沿01 02所在直线(连心线)对折,发现:两圆相切,直线0102必过切点;两圆相交,连心线垂直平分它们的公共弦。5.7? 正多边形与圆 ?正多边形概念:各边相等、各角也相等的多边形叫做正多边形。?性质: 正多边形都是对称图形, 一个正 n 边形共有 n 条对称轴, 没条对称轴都通过正 n 边形的中心。 一个正

16、多边形如果有偶 数条边,那么它既是轴对称图形,又是中心对称图形。如果一个正多边形是中心对称图形,那么它的中心就是对称中心。1、?边数相同的正多边形相似。 ?2、?任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。?友情提醒:( 1)边数相同的正多边形相似,这是解与正多边形有关问题常用到的知识。?(2)任何三角形都有外接圆和内切圆,但只有正三角形的外接圆和内切圆才是同心圆。 过正多边形任意三个顶点的圆就是这个正多边形的外接圆。 ?作正多边形:作半径为 R的正n边形的关键是n等分圆。这就要学习两种方法:?( 1) ?用量角器等分圆,可以作任意正多边形,这是近似作法。具体地说先计算出顶点在圆

17、心的角的度数, 即正n边形的圆心角为,然后依次用量角器将圆等分,顺次连接各分点,就作出正n边形。?( 2) ?用尺规等分圆,作正方形和正六边形。具体地说:先作出两条互相垂直的直径,将圆四等分,顺次连接各分点, 就做出正方形; 用圆规从圆上一点顺次截取等与半径的弦, 将圆六等分, 顺次连接各等分点, 就作出正六边形。 友情提醒:在作正多边形时,要从圆周上某一点开始连续截取等弧,否那么,易产生误差。?5.8? 弧长及扇形的面积 ?圆的周长公式C=2兀R,其中n是圆的周长与直径的比值,n称为圆周率。?弧长公式:匸,其中,表示1°的圆心角的倍数,它不带单位,R为圆的半径,I为亍的圆心角所对的

18、弧长。?扇形面积公式: ?一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。 圆心角为n°的扇形面积的计算公式为 S扇形=。 ? 弧长为 I 的扇形面积的计算公式为 S 扇形=IR。 ?公式中的n应理解为1°的圆心角的倍数,不带单位,同时要注意与弧长:1=公式进行比拟,防止混淆。公式与三角形面积公式相类似,在 S=IR中,把扇形看成一个曲边三角形,把弧长 I看作底,R看作高,这样比照,有助于理解与记忆公 式。 ?5.9 圆锥侧面积和全面积 ?1=2 n圆锥的侧面展开:?圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面圆的周长这个扇形的半径等于圆锥的母线长I母线=?这

19、个扇形的圆心角a= 360° ?这个扇形的面积等于圆锥的侧面积S侧面积=S 扇形= 2 n r l= n r I?圆锥与圆柱的比拟?圆柱:由一个矩形旋转得到,如矩形ADD G绕直线AB旋转一周S 侧=2n rh?S 全=?S 侧 +2S 底=2 n rh+2 n r2V= n r2h圆锥?:由一个直角三角形旋转得到,如Rt SOA绕直线SO旋转一周S 侧=n r?S 全=?S侧+SV= n r2h九年等腰数学全形上册第一章、图一、知识框架厂等腰三角形的性质和判定底=n r?+ n r2等边三角形的性质和判定线段的垂直平分线的性质和判定I角的平分线的性质和判定知识点总结形与证明二二知识

20、详解2. 1、等腰三角形的判定、性质及推论 性质直角腰角形全等的个底角相等笔边对等角判定:有两个角相角对等边推论:等腰三角3.平行四边形一2 . 2、等边三角广平行四边形的性质和判定:4个判定的三角形是等腰三角形等矩形的性平分线判底边上的中线、底边上的高互相重合即“三线合 菱形个判定定理定:3个判定定理正方形及性质和判定:2个判定定理三角形的三个角都相等,并 合一的性质;等边三角形性质定理:等边 '且每个角都等于 60度;等边三角形的三条边都满足“三线 是轴对称图形,有 3条对称轴。判定定理:有一个角是 60度的等腰三角形是等边三角形。 是等边三角2. 3、线段的垂直平分线形。1线段垂

21、直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离判定:到一条线段两个端点距离相等的点在这条线段的垂或者三个角都相等的三角形相等。直平分线上。2三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三的垂直平分线分别以线段的两个端点 A、B为圆心,以大于AB的一半长为个顶点的距离相等。半径作弧,两弧交于点 M N;作直线MN那么直线MN就是线段A注意垂直平分线解决梯形问题的根本思路 :通过分割和拼接转化成三角形和平行四边形 进行解决2. 4、角平分线即需要掌握 常作的辅助线。1角平分线的性质及判定定理1性质:角平分线上的点的面积公式两边的距离相等a b

22、 h = lh I-中位线长三角形的中位线5.中位线“-梯形的中位线判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。(2) 三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。(3) 如何用尺规作图法作出角平分线2. 5、直角三角形(1) 勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。(2) 直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)2.6、几种特殊四边形的性质2.7. 几种特殊四边形的判定

23、方法A那么说明数据的波动幅度越2.8、三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线.区别三角形的中位线与三角形的中线。三角形中位线的性质三角形的中位线平行于第三边并且等于它的一半.2.9、梯形的中位线:连结梯形两腰中点的线段叫做梯形的中位线。注意:中位线是两腰中点的连线,而不是两底中点的连线。梯形中位线的性质梯形的中位线平行于两底,并且等于两底和的一半。第二章、数据的离散程度(一)知识点复习1、极差:一组数据中的最大值与最小值的差叫做极差。计算公式:极差=最大值-最小值。极差是刻画数据离散程度的一个统计量,可以反映一组数据的变化范围。一般说,极差越小 小。2、方差各个数据与平均数

24、的差的平均数叫做这组数据的方差,记作S2。巧用方差公式:1 - - -1、根本公式:S2=(X 1-X) 2+(X2-X)2+(Xn-X)2n1 -2、简化公式:S2=(X 12+X22+Xn2)-nX 2n1 -也可写成:S2= (X+X+Xn2)-X 2n1 -3、 简化:S2= (X ' 12+X' 22+X' n2)-nX 2n1 -也可写成:S 2= (X ' 12+X' 22+X' n2)-X 2n3、标准差:方差的算术平方根叫做这组数据的标准差,记作So意义:1、极差、方差和标准差都是用来描述一组数据波动情况的特征,常用来比拟两组数

25、据的波动大小,我们通常研究的是这组 数据的个数相等、平均数相等或比拟接近的情况。2、方差较大的波动较大,方差较小的波动较小。3、方差大,标准差就大,方差小,标准差就小。因此标准差同样反映数据的波动大小。 注意:对两组数据来说,极差大的那一组不一定方差大,反过来,方差大的极差也不一定大。第三章、二次根式一、知识框架定义:形如:yfaa> 0nd概念H最简二次根式:1被开方数不含分母;2被开方数中不含能开尽方的因数或因式。*性质户 加减法:先将二次根式化成最简的二次 根式,再将被开方数相同的二次根式进 行合并。.乘法b 二 ab(a 0,b -0)混合运算第四章、一元二次方程一知识框架元二次

26、方程的概念二、知识详解1、一元二次方程定义并且未知数的最高次数是D>元二次洋程 的一元形式次方= 0a程的解,法它的特征叫做二2、一元二次方程的解法1、直接开平方法叫做二次直接开平方法适用次项系数;bx叫做一次项,-b于解形如x+a2的根的情况一元二次方 程的探索直接配方2的整式方程叫做一元二次方程。 因式分解法方程 ax2 + bx + c = 0(a 式 0),的两根为xi ,X2那么为十X2 = -,ax的二次多项式,等式右边是零,其中于未知数b叫做一次项系数; 公式法 Lc叫做常数项。元。当2ax bx c = 0(a = 0)b 俞0,方程有两个不b, 相等的实根; =0时,方

27、 程有两个相等的实根 ; : 0时,方程无实根.2axx = a - - b ;当 b<0时,方程没有实数根。2、配方法一般步骤:(1) 方程ax2bx0(a = 0)两边同时除以a,将二次项系数化为1.(2) 将所得方程的常数项移到方程的右边。(3) 所得方程的两边都加上一次项系数一半的平方(4) 配方,化成(x a)2二b(5)开方。当b _0时,X - -a _ .、b ;当b<0时,方程没有实数根。3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程ax2 bx c = 0(a = 0)的求根公式:4、因式分解法一元二次方程的一边

28、另一边易于分解成两个一次因式的乘积时使用此方法。3: 元二次方程根的判别式根的判别式1、 定义:一元二次方程 ax2 bx c = 0(a = 0)中,b2 -4ac 叫做一元二次方程 ax2 bx c = 0(a = 0) 的根的判别式。2、性质:当b2 -4ac >0时,方程有两个不相等的实数根;当 b2 -4ac = 0时,方程有两个相等的实数根;当2 b -4ac v 0时,方程没有实数根。4: 一元二次方程根与系数的关系bc如果方程ax bx c = 0(a = 0)的两个实数根是Xi,X2,那么xix2,X1X2:aa应将每千克小型西瓜的售价降低多少元 ?解:设应将每千克小型

29、西瓜的售价降低X元X根据题意,得:(3 - 2 - x)(20040) - 24 二 2000.1解得:X, = 0.2,X2 = 0.3 答:应将每千克小型西瓜的售价降低 0.2或0.3元。第五章、中心对称图形二(圆的有关知识)(一)、知识框架(二)知识点详解有一、圆的概念圆的定义,弧、弦等概念 正多边形和圆关的.位置乍是到定点 以系作是到 圆的内部:可以系作是到 轨迹形式的概念集合形式的概念圆可以看作1、2、3、圆的外部:可正多边形与圆圆内接正多边形垂径定理及其推论-正多边形的有关计算距离点的集合圆的对称性.弧、弦、弦心距、圆心角关系定理及其推论 正多边形的半径、边心定点的距离大于定长的点

30、的集合;才定点的距离小于定长的点的圆周角定理及其推多边形的内角、中圆确接正多边形作法-等份圆心角、外角、正多边形的不共线的三点确定一个圆正三、六、十二边形1三角形的外接圆正四、八边形1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;补充2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。1、点在圆内d:r点C在圆内;2、点在圆

31、上d二 r点B在圆上;3、点在圆外dr点A在圆外;、点与圆的位置关系1、直线与圆相离d r =无交点;2、直线与圆相切d = r =有一个交点;3、直线与圆相交d : r =有两个交点;四、圆与圆的位置关系三、直线与圆的位置关系外离图1=外切图2=相交图3= 内切图4= 内含图5=无交点 = 有一个交点 = 有两个交点 有一个交点 -无交点 =d Rr;d=Rr;R -r :: d : R r ;d =R-r ;d Rr ;五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1: 1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧;2弦的垂直平分线经过圆心,并且平分弦所对的两

32、条弧;3平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:AB是直径 AB _ CD CE = DE 中任意2个条件推岀其他3个结论。弧BC =弧BD 弧AC =弧ADOADEFOA推论2:圆的两条平行弦所夹的弧相等。即:在。O 中,丁 AB / CD弧 AC =弧 BD六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的的弧相等,弦心距相等。此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,那么可以推岀其它的 3个结论, 即: AOB "DOE : AB

33、 二 DE ;OC = OF :弧BA =弧BD七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 即:丁 AOB和ACB是弧AB所对的圆心角和圆周角 AOB =2 ACB2、圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在。O中,T C、/ D都是所对的圆周角二 C "D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:COAOOA在。O中,T AB是直径 或T C =90 C =90 AB是直径推论3 :假设三角形一边上的中线等于这边的一半,那么这个三角形是直角三

34、角形。即:在厶ABC中,0C 二 OA二 OB ABC是直角三角形或.C =90注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在。O中,丁四边形 ABCD是内接四边形C BAD =180 B D =180 DAE =/C九、切线的性质与判定定理(1) 切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即: V MN _ OA且MN过半径OA外端二MN是。O的切线(2) 性质定理:切线垂直于过切点的半径(如上图)推论1 :

35、过圆心垂直于切线的直线必过切点。推论2 :过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条 一个。E十、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的 夹角。即:v PA、PB是的两条切线PA=PB PO平分£BPA十、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:OjO2垂直平分AB。即:v。O1、。2相交于A、B两点-O1O2垂直平分AB十二、圆内正多边形的计算(1)正三角形:在。O中厶ABC是正三角形有关计算在Rt BOD中

36、进行:OD : BD :OB = 1:3 : 2 ;BAO2O1BOAD(2) 正四边形同理,四边形的有关计算在 Rt OAE中进行,OE : AE :OA =1:1:、2 :(3) 正六边形同理,六边形的有关计算在 Rt OAB中进行,AB:OB:OA =1: 3:2.OBSCBDEB十三、扇形、圆柱和圆锥的相关计算公式1、扇形:1弧长公式:丨n R1802扇形面积公式:nn R21SIR3602n:圆心角R:扇形多对应的圆的半径I:扇形弧长 S:扇形面积2、圆锥侧面展开图21S表 = S侧 S底=二 Rr mr1 22 圆锥的体积:vr2h33、圆锥与圆柱的比拟名称圆柱圆锥图形图形的形成过

37、程由一个矩形旋转得到,如矩形ADD G绕直线AB旋转一周由一个直角三角形旋转得到, 如Rt SOA绕直线SO旋转一周图形的组成两个底面圆和一个侧面一个底面圆和一个侧面面积、体积的计算公 式S 侧=2n rhS 全=S 侧 +2S 底=2 n rh+2 n r2V=n r2hS 侧=n r2S 全=S 侧 +S 底=n r + n rV=n r2h下册第六章?二次函数21. 定义:一般地,如果 y =ax bx ca,b, c是常数,a = 0,那么y叫做x的二次函数.2. 抛物线的三要素:开口方向、对称轴、顶点 a的符号决定抛物线的开口方向:当a 0时,开口向上;当 a . 0时,开口向下;a

38、相等,抛物线的开口大小、形状相同 平行于y轴或重合的直线记作 x = h.特别地,y轴记作直线x = 0. 几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标当a a 0时开口向上x = 0 ( y 轴)(0,0)当a c 0时 开口向下x = 0 ( y 轴)(0, k)(h,0)(h, k)/ b 4ac-b2(_一,)2a4a1 公式法:2b 彳 4ac_b2y=ax +bx+c = a x + i +'、2a 丿 4a,.顶点是一 A ,色2a 4a对称轴是直线4.求抛物线的顶点、对称轴的方法bx =-2a2配方法:运用配方的方法,将抛物线的解析式化为y = a

39、x h f十k的形式,得到顶点为h , k,对称轴是直线 x = h.3 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。假设抛物线上两点Xi, y、X2, y及y值相同,那么对称轴方程可以表示为:x -229.抛物线y = ax2 bx c中,a, b, c的作用21 a决定开口方向及开口大小,这与 y =ax 中的a完全一样.2b和a共同决定抛物线对称轴的位置.由于抛物线y二ax2 bx c的对称轴是直线x -,故:b = 0时,对称轴为y轴;一 0 即a、b同号时,对称轴在y轴左侧;一:0 即 2aaaa、b异号时,对称轴在 y轴右侧.3c的大小决定

40、抛物线 y = ax2 bx c与y轴交点的位置.当x = 0时,y = c,.抛物线y = ax2 bx c与y轴有且只有一个交点0,c:c二0,抛物线经过原点;c 0,与y轴交于正半轴; c : 0,与y轴交于负半轴.K以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 y轴右侧,那么 一:0.a11. 用待定系数法求二次函数的解析式21 一般式:y =ax bx c.图像上三点或三对 x、y的值,通常选择一般式.2 顶点式:y二a x - h 2 - k.图像的顶点或对称轴,通常选择顶点式.3 交点式:图像与 x轴的交点坐标x1、x2,通常选用交点式:y = a x-捲x-x2 .12. 直线与抛物线的交点1y轴与抛物线y = ax2 bx c得交点为o, c.2抛物线与x轴的交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论