下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第4讲等差数列、等比数列与数列求和一、填空题1设an是公差不为0的等差数列,a12且a1,a3,a6成等比数列,则an的前n项和Sn_.解析 由题意设等差数列公差为d,则a12,a322d,a625d.又a1,a3,a6成等比数列,aa1a6,即(22d)22(25d),整理得2d2d0.d0,d,Snna1dn.答案 n2数列an的通项公式an,若前n项的和为10,则项数为_解析 an,Sn110,n120.答案 1203已知等差数列an的前n项和为Sn,a55,S515,则数列的前100项和为_解析a55,S515,15,即a11.d1,ann.设数列的前n项和为Tn.T1001.答案4已
2、知数列an,bn都是等差数列,a15,b17,且a20b2060.则anbn的前20项的和为_解析由题意知anbn也为等差数列,所以anbn的前20项和为:S20720.答案7205已知等比数列an的前n项和Sn2n1,则aaa_.解析当n1时,a1S11,当n2时,anSnSn12n1(2n11)2n1,又a11适合上式an2n1,a4n1.数列a是以a1为首项,以4为公比的等比数列aaa(4n1)答案(4n1)6定义运算:adbc,若数列an满足1且12(nN*),则a3_,数列an的通项公式为an_.解析 由题意得a111,3an13an12即a12,an1an4.an是以2为首项,4为
3、公差的等差数列,an24(n1)4n2,a34×3210.答案 104n27在等比数列an中,a1,a44,则公比q_;|a1|a2|an|_.解析q38,q2.an·(2)n1,|an|2n2,|a1|a2|an|2n1.答案22n18已知Sn是等差数列an的前n项和,且S1135S6,则S17的值为_解析因S1135S6,得11a1d356a1d,即a18d7,所以S1717a1d17(a18d)17×7119.答案1199等差数列an的公差不为零,a47,a1,a2,a5成等比数列,数列Tn满足条件Tna2a4a8a2n,则Tn_.解析设an的公差为d0,由
4、a1,a2,a5成等比数列,得aa1a5,即(72d)2(73d)(7d)所以d2或d0(舍去)所以an7(n4)×22n1.又a2n2·2n12n11,故Tn(221)(231)(241)(2n11) (22232n1)n2n2n4.答案2n2n410数列an的通项公式an,如果bn,那么bn的前n项和为_解析 bn,所以b1b2bn1.答案 1二、解答题11已知an为等差数列,且a36,a60.(1)求an的通项公式;(2)若等比数列bn满足b18,b2a1a2a3,求bn的前n项和公式解(1)设等差数列an的公差为d.因为a36,a60,所以解得a110,d2.所以a
5、n10(n1)·22n12.(2)设等比数列bn的公比为q.因为b2a1a2a324,b18,所以8q24,即q3.所以bn的前n项和公式为Sn4(13n)12已知首项不为零的数列an的前n项和为Sn,若对任意的r,tN*,都有2.(1)判断an是否是等差数列,并证明你的结论;(2)若a11,b11,数列bn的第n项是数列an的第bn1项(n2),求bn;(3)求和Tna1b1a2b2anbn.解(1)an是等差数列证明如下:因为a1S10,令t1,rn,则由2,得n2,即Sna1n2,所以当n2时,anSnSn1(2n1)a1,且n1时此式也成立,所以an1an2a1(nN*),即
6、an是以a1为首项,2a1为公差的等差数列(2)当a11时,由(1)知ana1(2n1)2n1,依题意,当n2时,bnabn12bn11,所以bn12(bn11),又b112,所以bn1是以2为首项,2为公比的等比数列,所以bn12·2n1,即bn2n1.(3)因为anbn(2n1)(2n1)(2n1)·2n(2n1)Tn1·23·22(2n1)·2n13(2n1),即Tn1·23·22(2n1)·2nn2,2Tn1·223·23(2n1)·2n12n2,得Tn(2n3)·2
7、n1n26.13已知数列an是首项为a1,公比q的等比数列,设bn23logan(nN*),数列cn满足cnan·bn.(1)求数列bn的通项公式;(2)求数列cn的前n项和Sn.解(1)由题意,知ann(nN*),又bn3logan2,故bn3n2(nN*)(2)由(1),知ann,bn3n2(nN*),cn(3n2)×n(nN*)Sn1×4×27×3(3n5)×n1(3n2)×n,于是Sn1×24×37×4(3n5)×n(3n2)×n1,两式相减,得Sn3(3n2)
8、15;n1(3n2)×n1,Sn×n(nN*)14 记公差d0的等差数列an的前n项和为Sn,已知a12,S3123.(1)求数列an的通项公式an及前n项和Sn.(2)已知等比数列bnk,bnan,n11,n23,求nk.(3)问数列an中是否存在互不相同的三项构成等比数列,说明理由解 (1)因为a12,S33a13d123,所以d2.所以ana1(n1)d2n,Snn2(1)n.(2)因为bnan2n,所以bnk2nk.又因为数列bnk的首项bn1b12,公比q3,所以bnk2·3k1.所以2nk2·3k1,则nk3k1.(3)假设存在三项ar,as,at成等比数列,则aar·at,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 传媒技术合同范例
- 劳务派遣人合同范例
- 下单交易合同范例
- 做砖抹灰合同范例
- 地基塌陷赔偿合同模板
- 保修装修合同模板
- 围墙护栏维修合同范例
- 单位和公司合同模板
- 大货车购车合同模板
- ktv接手转让合同范例
- 城镇雨污分流项目可行性研究报告
- 《19 海滨小城》公开课一等奖创新教学设计及反思
- 2024-2025学年湖南省常德市小学六年级数学上册期中素质自测试卷及答案
- 公司数据安全与保护管理制度
- 广西特种作业实际操作考评手册(试行)-低压电工作业考评分册
- 超声技能操作评分表
- 顺产一病一品
- 《分子和原子》参考课件
- 河南中职语文-基础模块上册-(高教版)第一单元测试题含答案
- 设备维修保养人员专业素质培养
- 27《一个粗瓷大碗》(教学设计)统编版语文三年级上册
评论
0/150
提交评论