捷达轿车后轮制动器_设计说明书_第1页
捷达轿车后轮制动器_设计说明书_第2页
捷达轿车后轮制动器_设计说明书_第3页
捷达轿车后轮制动器_设计说明书_第4页
捷达轿车后轮制动器_设计说明书_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2 太原科技大学机械工程学院 课程设计课程名称:捷达轿车后轮鼓式制动器设计 专 业:车辆工程 班 级:车辆121202 姓 名:梁开心 学 号:201212040212 指导教师:赵富强 学 期:2014-2015 日 期:2015/12/28 3737太原科技大学机械工程学院车辆工程课程设计 摘 要近年来我国汽车市场迅速发展,特别是轿车汽车发展的方向。然而随着汽车数量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。因此,如何开发出高性能的制动系统,为安全行驶提供保障是我们要解决的主要问题。另外,随着汽车市场竞争的加剧,如何缩短产品开发周期、提高设计效率

2、,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。本说明书主要介绍了捷达轿车后轮鼓式制动系统的设计。首先介绍了汽车制动系统的发展、结构、分类,并对鼓式制动器和盘式制动器的结构及优缺点进行分析。设计计算确定前盘、后鼓式制动器、制动主缸的主要尺寸和结构形式。绘制出了后制动器装配图、制动鼓零件图以及制动蹄零件图等。最终对设计出的制动系统的各项指标进行评价分析。另外在设计的同时考虑了其结构简单、工作可靠、成本低等因素。通过本次设计的计算结果表明设计出的制动系统是合理的、符合标准的。其满足结构简单、成本低、工作可靠等要求。关键字:汽车;制动;鼓式制动器Abstract In recent ye

3、ars the rapid development of China's auto market, especially cars car development. However, with the increase in car ownership, safety problems are increasingly attracted attention, and the braking system is an important vehicle active safety systems in the world. Therefore, how to develop high-

4、performance braking system, to provide protection for the safe driving is the main problem we have to solve. In addition, with increased competition in the automotive market, how to shorten the product development cycle, improve design efficiency, reduce costs, increase market competitiveness has be

5、come the key to business success. This manual describes the Jetta sedan rear drum brake system design. The first describes the development of automotive braking systems, structure, classification, and by drum brakes and disc brakes on the structure and analyze the advantages and disadvantages. Desig

6、n calculations to determine the front disk, rear drum brakes, brake master cylinder of the main dimensions and structure. Drawn out of the rear brake assembly diagram, brake drum and brake shoe parts diagram parts chart. End of the braking system designed to evaluate the analysis of the indicators.

7、Also taking into account in the design of its structure is simple, reliable, low cost factor. Through this design results show that the design of the braking system is reasonable, standards-compliant. Meet its simple structure, low cost, reliable requirements.Key words: car;braking;brake drum目录第1章 绪

8、 论1.1制动器设计的意义51.2制动器研究现状51.3 鼓式制动器的简介51.4 鼓式制动器的组成固件61.5 鼓式制动器的工作原理61.6 鼓式制动器的产品特性71.7设计基本要求和整车性能参数7 第2章 鼓式制动器的选择2.1鼓式制动器形式方案分析82.2鼓式制动器82.3制动驱动机构的结构形式选择92.4简单制动系92.5动力制动系102.5.1气压制动系102.5.2气顶液式制动系102.5.3全液压动力制动系102.6鼓式制动器主要零部件的结构设计112.6.1制动蹄112.6.2制动底板112.6.3制动蹄的支承112.6.4制动轮缸112.7鼓式制动器整体方案分析112.8鼓式

9、制动器装配注意事项13第3章 鼓式制动器的设计计算3.1捷达轿车的主要参数数值143.2车辆前后轮制动力的分析143.3前、后轮制动力分配系数的确定173.4制动器受力分析及最大制动力的确定183.4.1制动器受力分析183.4.2制动器最大制动力矩183.5制动鼓内径R及制动鼓壁厚度的选取193.5.1制动鼓壁厚的确定193.5.2.制动蹄摩擦衬片的包角和宽度b203.5.3.摩擦衬片起始角213.5.4.张开力P的作用线至制动器中心的距离213.5.5.制动蹄支销中心的坐标位置是k与c213.5.6摩擦片摩擦系数21第4章 制动器主要零部件的结构设计4.1 制动鼓234.2 制动蹄234.

10、3 制动底板234.4 制动蹄的支承234.5 制动轮缸244.6 制动器间隙24 第5章 校 核5.1制动器的热容量和温升的核算255.2 制动器的校核265.2.1摩擦衬片所受力的校核265.3驻车制动的计算265.3.1汽车可能停驻的极限上坡路倾斜角275.3.2汽车可能停驻的极限下坡路倾斜角27结 论28致 谢29 参考文献30 第1章 绪 论1.1制动器设计的意义现代交通工具中用得最多,最普遍,也是最方便的交通运输工具就是汽车。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直

11、接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动器。本次毕业设计题目为捷达轿车后轮鼓式制动器设计。通过查阅相关的资料,运用专业基础理论和专业知识,确定捷达轿车后轮鼓式制动器的设计方案,进行部件的设计计算和结构设计。使其达到以下要求:具有足够的制动效能以保证汽车的安全性;采用合理的设计方案使制造简单经济;同时在材料的选择上尽量采用对人体无害的材料。1.2制动器研究现状汽车在行驶过程中需要频繁的进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽

12、车的制动性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,从而使汽车的速度逐渐减小至零,对这一过程中车辆受力情况的分析有助于制动器的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们主要从三个方面来对制动过程进行分析和评价:1、制动效能:即制动距离与制动减速度;2、制动效能的恒定性:即抗热衰退性;3、制动时汽车的方向稳定性;目前,对于整车制动器的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关传动系、制动系的试验均通过间接测量得到的。当汽车在道

13、路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动器性能研究提供更全面的试验数据和性能评价。1.3鼓式制动器的简介鼓式制动器也叫块式制动器,是靠制动块在制动轮上压紧来实现刹车的。鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。近三十年中,鼓式制动器在轿车领域上已经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济类

14、轿车中使用,主要用于制动负荷比较小的后轮和驻车制动。1.4 鼓式制动器的组成固件鼓式制动器的旋转元件是制动鼓,固定元件是制动蹄。制动时制动蹄鼓式制动器在促动装置作用下向外旋转,外表面的摩擦片压靠到制动鼓的内圆柱面上,对鼓产生制动摩擦力矩。 凡对蹄端加力使蹄转动的装置统称为制动蹄促动装置,制动蹄促动装置有轮缸、凸轮和楔。以液压制动轮缸作为制动蹄促动装置的制动器称为轮缸式制动器;以凸轮作为促动装置的制动器称为凸轮式制动器;用楔作为促动装置的制动器称为楔式制动器。鼓式制动器比较复杂的地方在于,许多鼓式制动器都是自作用的。 当制动蹄与鼓发生接触时,会出现某种楔入动作,其效果是借助更大的制动力将制动蹄压

15、入鼓中。楔入动作提供的额外制动力,可让鼓式制动器使用比盘式制动器所用的更小的活塞。但是,由于存在楔入动作,在松开制动器时,必须使制动蹄脱离鼓。这就是需要一些弹簧的原因。弹簧有助于将制动蹄固定到位,并在调节臂驱动之后使它返回。1.5鼓式制动器的工作原理在轿车制动鼓上,一般只有一个轮缸,在制动时轮缸受到来自总泵液力后,轮缸两端活塞会同时顶向左右制动蹄的蹄端,作用力相等。但由于车轮是旋转的,制动鼓作用于制动蹄的压力左右不对称,造成自行增力或自行减力的作用。因此,业内将自行增力的一侧制动蹄称为领蹄,自行减力的一侧制动蹄称为从蹄,领蹄的摩擦力矩是从蹄的22.5倍,两制动蹄摩擦衬片的磨损程度也就不一样。为

16、了保持良好的制动效率,制动蹄与制动鼓之间要有一个最佳间隙值。随着摩擦衬片磨损,制动蹄与制动鼓之间的间隙增大,需要有一个调整间隙的机构。过去的鼓式制动器间隙需要人工调整,用塞尺调整间隙。现在轿车鼓式制动器都是采用自动调整方式,摩擦衬片磨损后会自动调整与制动鼓间隙。当间隙增大时,制动蹄推出量超过一定范围时,调整间隙机构会将调整杆(棘爪)拉到与调整齿下一个齿接合的位置,从而增加连杆的长度,使制动蹄位置位移,恢复正常间隙。轿车鼓式制动器一般用于后轮(前轮用盘式制动器)。鼓式制动器除了成本比较低之外,还有一个好处,就是便于与驻车(停车)制动组合在一起,凡是后轮为鼓式制动器的轿车,其驻车制动器也组合在后轮

17、制动器上。这是一个机械系统,它完全与车上制动液压系统是分离的:利用手操纵杆或驻车踏板(美式车)拉紧钢拉索,操纵鼓式制动器的杠件扩展制动蹄,起到停车制动作用,使得汽车不会溜动;松开钢拉索,回位弹簧使制动蹄恢复原位,制动力消失。1.6鼓式制动器的产品特性优点:鼓式制动器造价便宜,而且符合传统设计。 四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式的设计。缺点:

18、鼓式制动器的制动效能和散热性都要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。而由于散热性能差,在制动过程中会聚集大量的热量。制动块和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉。1.7设计基本要求和整车性能参数整车质量: 空载:1091kg 满载:1525kg质心位置: 质心距前轴距离:L1=1.236m 质心距后轴距离:L2=1.235m质心高度: 空载时:hg0=0.56m 满载时:hg=0.55m轴 距: L=2.4

19、71m满载后轴重: m=750kg车轮工作半径:300mm轮胎规格: 185/60R14 85H第2章 鼓式制动器的选择 2.1鼓式制动器形式方案分析汽车制动器几乎都是机械摩擦式,即利用旋转元件与固定元件两工作表面间的摩擦产生的制动力矩使汽车减速或停车。为更好的实现制动,现代轿车大多采用了前盘后鼓的设计方案。2.2鼓式制动器鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用于各类汽车上。现代的鼓式制动器分为以下几类:2.2.1领从蹄式制动器图2-1领从蹄式如图所示,若图上方的旋向箭头代表汽车前进时制动鼓的旋转方向(制动鼓正向旋转),则蹄1为领蹄,蹄2为从蹄。汽车倒车时制动

20、鼓的旋转方向变为反向旋转,则相应地使领蹄与从蹄也就相互对调了。这种当制动鼓正、反方向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器称为领从蹄式制动器。领蹄所受的摩擦力使制动蹄压得更紧,即摩擦力矩具有“增势”作用,故又称为增势蹄;而从蹄所受的摩擦力使制动蹄离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小。领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进与倒车时的制动性能不变,且结构简单,造价较低,也便于附装驻车制动机构,故这种结构仍广泛用于中、重型载货汽车的前、后轮制动器及轿车的后轮制动器。

21、2.2.2双领蹄式制动器图2-2双领蹄式若在汽车前进时两制动蹄均为领蹄的制动器,则称为双领蹄式制动器。显然,当汽车倒车时这种制动器的两制动蹄又都变为从蹄故它又可称为单向双领蹄式制动器。如图25(c)所示,两制动蹄各用一个单活塞制动轮缸推动,两套制动蹄、制动轮缸等机件在制动底板上是以制动底板中心作对称布置的,因此,两蹄对制动鼓作用的合力恰好相互平衡,故属于平衡式制动器。双领蹄式制动器有高的正向制动效能,但倒车时则变为双从蹄式,使制动效能大降。这种结构常用于中级轿车的前轮制动器,这是因为这类汽车前进制动时,前轴的动轴负荷与附着力大于后轴,而倒车时则相反。2.2.3双向双领蹄式制动器图2-3双向双领

22、从蹄式当制动鼓正向和反向旋转时,两制动助均为领蹄的制动器则称为双向双领蹄式制动器。它也属于平衡式制动器。由于双向双领蹄式制动器在汽车前进及倒车时的制动性能不变,因此广泛用于中、轻型载货汽车和部分轿车的前、后车轮,但用作后轮制动器时,则需另设中央制动器用于驻车制动。2.2.4单向增力式制动器图2-4单向增力式单向增力式制动器如图所示:两制动蹄下端以顶杆相连接,第二制动蹄支承在其上端制动底板上的支承销上。由于制动时两制动蹄的法向反力不能相互平衡,因此它居于一种非平衡式制动器。单向增力式制动器在汽车前进制动时的制动效能很高,且高于前述的各种制动器,但在倒车制动时,其制动效能却是最低的。因此,它仅用于

23、少数轻、中型货车和轿车上作为前轮制动器。2.3制动驱动机构的结构形式选择根据制动力源的不同,制动驱动机构可分为简单制动、动力制动以及伺服制动三大类型。而力的传递方式又有机械式、液压式、气压式和气压-液压式的区别。2.4简单制动系简单制动系即人力制动系,是靠司机作用于制动踏板上或手柄上的力作为制动力原。传递力的方式有、又有机械式和液压式两种。机械式的靠杆系或钢丝绳传力,其结构简单,造价低廉,工作可靠,但机械效率低,因此仅用于中、小型汽车的驻车制动装置中。液压式的简单制动系通常简称为液压制动系,用于行车制动装置。其优点是作用滞后时间短(0.1s0.3s),工作压力大(可达10MPa12MPa),缸

24、径尺寸小,可布置在制动器内部作为制动蹄的张开机构或制动块的压紧机构,使之结构简单、紧凑,质量小、造价低。但其有限的力传动比限制了它在汽车上的使用范围。另外,液压管路在过度受热时会形成气泡而影响传输,即产生所谓“汽阻”,使制动效能降低甚至失效;而当气温过低时(-25和更低时),由于制动液的粘度增大,使工作的可靠性降低,以及当有局部损坏时,使整个系统都不能继续工作。液压式简单制动系曾广泛用于轿车、轻型及以下的货车和部分中型货车上。但由于其操作较沉重,不能适应现代汽车提高操纵轻便性的要求,故当前仅多用于微型汽车上,在轿车和轻型汽车上已极少采用。2.5动力制动系动力制动系是以发动机动力形成的气压或液压

25、势能作为汽车制动的全部力源进行制动,而司机作用于制动踏板或手柄上的力仅用于对制动回路中控制元件的操纵。在简单制动系中的踏板力与其行程间的反比例关系在动力制动系中便不复存在,因此,此处的踏板力较小且可有适当的踏板行程。动力制动系有气压制动系、气顶液式制动系和全液压动力制动系3种。2.5.1气压制动系气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力,且主车与被拖的挂车以及汽车列车之间制动驱动系统的连接装置结构简单、连接和断开均很方便,因此被广泛用于总质量为8t以上尤其是15t以上的载货汽车、越野汽车和客车上。但气压制动系必须采用空气压缩机、储气筒、制动阀等装置,使其结构复杂、笨重、轮

26、廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长(0.3s0.9s),因此,当制动阀到制动气室和储气筒的距离较远时,有必要加设气动的第二级控制元件继动阀(即加速阀)以及快放阀。 2.5.2气顶液式制动系气顶液式制动系是动力制动系的另一种型式,即利用气压系统作为普通的液压制动系统主缸的驱动力源的一种制动驱动机构。它兼有液压制动和气压制动的主要优点。由于其气压系统的管路短,故作用滞后时间也较短。显然,其结构复杂、质量大、造价高,故主要用于重型汽车上,一部分总质量为9t11t的中型汽车上也有所采用。2.5.3全液压动力制动系全液压动力制动系除了具有一般液压制动系统的优点外,还具有操纵

27、轻便、制动反应快、制动能力强、受气阻影响较小、易于采用制动力调节装置和防滑移装置,及可与动力转向、液压悬架、举升机构及其他辅助设备共用液压泵和储油罐等优点。但其结构复杂、精密件多,对系统的密封性要求也较高,故并未得到广泛应用,目前仅用于某些高级轿车、大型客车以及极少数的重型矿用自卸汽车上。2.6鼓式制动器主要零部件的结构设计2.6.1制动蹄制动蹄腹板和翼缘的厚度,轿车的约为3mm5mm。衬片可铆接或粘贴在制动蹄上,粘贴的允许其磨损厚度较大,使用寿命增长,但不易更换衬片;铆接的噪声较小。本次设计的制动蹄采用的材料为HT200。2.6.2制动底板制动底板是除制动鼓外制动器各零件的安装基体,应保证各

28、安装零件相互间的正确位置。制功底板承受着制动器工作时的制动反力矩,因此它应有足够的刚度。为此,由钢板冲压成形的制动底板均只有凹凸起伏的形状。重型汽车则采用可联铸铁KTH37012的制动底板。刚度不足会使制动力矩减小,踏板行程加大,衬片磨损也不均匀。本次设计采用45号钢。2.6.3制动蹄的支承二自由度制动筛的支承,结构简单,并能使制动蹄相对制动鼓自行定位。为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,应使支承位置可调。例如采用偏心支承销或偏心轮。支承销由45号钢制造并高频淬火。其支座为可锻铸铁(KTH37012)或球墨铸铁(QT40018)件。青铜偏心轮可保持制动蹄腹板

29、上的支承孔的完好性并防止这些零件的腐蚀磨损。具有长支承销的支承能可靠地保持制动蹄的正确安装位置,避免侧向偏摆。有时在制动底板上附加一个压紧装置,使制动蹄中部靠向制动底板,而在轮缸活塞顶块上或在张开机构调整推杆端部开槽供制动蹄腹板张开端插入,以保持制动蹄的正确位置。2.6.4制动轮缸制功轮缸为液压制动系采用的活塞式制动蹄张开机构。轮缸的缸体由灰铸铁HT250制成。其钢筒为通孔,需镗磨。活塞由铝合金制造。活塞外端压有钢制的开槽顶块,以支承插人槽中的制动蹄腹板端部或端部接头。轮缸的工作腔由装在活塞上的橡胶密封圈或靠在活塞内端面处的橡胶皮碗密封。本次设计采用的是HT250。2.7鼓式制动器整体方案分析

30、图2-5捷达轿车鼓式制动器的旋转元件是制动鼓,固定元件是制动蹄,制动时制图2-5 捷达轿车后轮鼓式制动器如图所示的捷达轿车后轮鼓式制动器的基本结构及组成。制动器的组成有以下几个部分:1、旋转部分:制动鼓 2、固定部分:制动底板 制动蹄3、张开机构:轮缸 4、定位调整:调整凸轮 偏心支承销制动蹄在促动装置的作用下向外旋转,外表面的摩擦片压靠到制动鼓的内圆柱面上,对鼓产生制动摩擦力矩。凡对制动蹄端加力并使制动蹄转动的装置统称为制动蹄促动装置,制动蹄促动装置有轮缸、凸轮和楔等。以液压制动轮缸作为制动蹄促动装置的制动器称为轮缸式制动器;以凸轮作为促动装置的制动器称为凸轮式制动器;用楔作为促动装置的制动

31、器称为楔式制动器。2.8鼓式制动器装配注意事项1、装配后总成应在8820Kpa,液压下工作持续3分钟的强度和密封试验,在次时间内任何部位均不得渗漏,压力降不得大雨294Kpa。2、放气螺钉总成490-588Kpa气压下总成各部位应保证密封,当松开放气螺钉时,气体通畅无阻地从气孔冲出。3、总成在制动过程中不得发生渗油现象。4、制动鼓与摩擦片间隙应在0.2mm-0.5mm范围内。5、总成在正常装配与使用条件下应保证制动灵活轻便不得发生阻碍或卡死现象。第3章 鼓式制动器的设计计算 3.1捷达轿车的主要参数数值整车质量: 空载:1091kg 满载:1525kg质心位置: 质心距前轴距离:L1=1.23

32、6m 质心距后轴距离:L2=1.235m质心高度: 空载时:hg0=0.56m 满载时:hg=0.55m轴 距: L=2.471m满载后轴重: m=750kg车轮工作半径:300mm轮胎规格: 185/60R14 85H3.2车辆前后轮制动力的分析汽车制动时,如果忽略路面对车轮的滚动阻力矩和汽车回转质量的惯性力矩,则任一角速度>0的车轮,其力矩平衡方程为: ,式中:制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N·m;地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称为地面制动力,其方向与汽车行驶方向相反,N;车轮有效半径,m。 令 并称之为制

33、动器制动力,它是在轮胎周缘克服制动器摩擦力矩所需的力,因此又称为制动周缘力。与地面制动力的方向相反,当车轮角速度>0时,大小亦相等,且仅由制动器结构参数所决定。即取决于制动器的结构型式、尺寸、摩擦副的摩擦系数及车轮有效半径等,并与制动踏板力即制动系的液压或气压成正比。当加大踏板力以加大,和均随之增大。但地面制动力受着附着条件的限制,其值不可能大于附着力,即或 式中 轮胎与地面间的附着系数; Z地面对车轮的法向反力。当制动器制动力和地面制动力达到附着力值时,车轮即被抱死并在地面上滑移。此后制动力矩即表现为静摩擦力矩,而即成为与相平衡以阻止车轮再旋转的周缘力的极限值。当制动到=0以后,地面制

34、动力达到附着力值后就不再增大,而制动器制动力由于踏板力的增大使摩擦力矩增大而继续上升(见图3-1)。根据汽车制动时的整车受力分析,考虑到制动时的轴荷转移,可求得地面对前、后轴车轮的法向反力Z1,Z2为:(1235+)7808.91N(1236)7136.09N 式中 G汽车所受重力; L汽车轴距;汽车质心离前轴距离;汽车质心离后轴距离; 汽车质心高度; g重力加速度; 汽车制动减速度。汽车总的地面制动力为 式中 q()制动强度,亦称比减速度或比制动力;,前后轴车轮的地面制动力。见图3-2由以上两式可求得前、后轴车轮附着力为 上式表明:汽车在附着系数为任意确定值的路面上制动时,各轴附着力即极限制

35、动力并非为常数,而是制动强度q或总制动力的函数。当汽车各车轮制动器的制动力足够时,根据汽车前、后轴的轴荷分配,前、后车轮制动器制动力的分配、道路附着系数和坡度情况等,制动过程可能出现的情况有三种,即(1)前轮先抱死拖滑,然后后轮再抱死拖滑;(2)后轮先抱死拖滑,然后前轮再抱死拖滑;(3)前、后轮同时抱死拖滑。在以上三种情况中,显然是最后一种情况的附着条件利用得最好。= (1) (2)式中 前轴车轮的制动器制动力,;后轴车轮的制动器制动力,;前轴车轮的地面制动力;后轴车轮的地面制动力;,地面对前、后轴车轮的法向反力;G 汽车重力;,汽车质心离前、后轴距离;汽车质心高度。因所设计的捷达轿车为轻型轿

36、车后轮鼓式制动器,而现代轿车的行使状况较好,特别是高级公路的高速要求,同步附着系数可选取(=0.7,则:=10461.5N 由式(1)、式(2)不难求得在任何附着系数的路面上,前、后车轮同时抱死即前、后轴车轮附着力同时被充分利用的条件。由式(2)得:/=由式(1)(2)得/= 2.904 (3)则=6859N,=3602.5N3.3前、后轮制动力分配系数的确定根据公式:=(L+hg)/L得:=(1235+0.7550)/2471=0.656式中 :同步附着系数L:汽车重心至后轴中心线的距离L:轴距hg:汽车质心高度3.4制动器受力分析及最大制动力的确定3.4.1制动器受力分析压力沿衬片长度方向

37、的分布规律除摩擦衬片因有弹性容易变形外,制动鼓、蹄片和支承也有变形,所以计算法向压力在摩擦衬片上的分布规律比较困难。通常只考虑衬片径向变形的影响,其他零件变形的影响较小而忽略不计。捷达轿车后轮鼓式制动器是有两个自由度的紧蹄摩擦衬片的径向变形规律。将坐标原点取在制动鼓中心O点。坐标轴线通过蹄片的瞬时转动中心A点。制动时,由于摩擦衬片变形,蹄片一面绕瞬时转动中心转动,一面顺着摩擦力作用的方向沿支承面移动。结果使蹄片中心位于O点,因而未变形的摩擦衬片的表面轮廓(EE线),就沿OO方向移动进入制动鼓内。显然,表面上所有点在这个方向上的变形是一样的位于半径OB上的任意的点B的变形就是BB线段,其径向变形

38、分量是这个线段在半径OB延长线上的投影,即BC线段。所以同样一些点的径向变形为=BCBBcos考虑到=(+)90°和BB= OO=,所以对于紧蹄的径向变形和压力P为sin(+)=0.000819P Psin(+)式中,为任意半径O B和轴之间的夹角;为半径O B和最大压力线OO之间的夹角;为x轴和最大压力线OO之间的夹角。也就是说,浮式蹄支承在任意斜支座面上时,其理论压力分布规律仍为正弦分布,但其最大压力点在何处,难以判断。3.4.2制动器最大制动力矩对于选取较大的各类汽车,应从保证汽车制动时的稳定性出发,来确定各轴的最大制动力矩。当时,相应的极限制动强度q,故所需的后轴和前轴的最大

39、制动力矩为T=Z=(L1-qhg)rT=其中 q= = =0.67则 =1525×9.8×(1236-0.67×0.55)×300/2471=2242NM单个前轮制动器产生的制动力矩为Fb1=/2=1121NM=1175.7N单个后轮制动器产生的制动力矩为Fb2=/2=587.9Nmm3.5制动鼓内径R及制动鼓壁厚度的选取3.5.1制动鼓壁厚的确定当输入力P一定时,制动鼓的直径愈大,则制动力矩亦愈大,散热性能亦愈好。但直径D的尺寸受到轮辋内径的限制,而且D的增大也使制动鼓的质量增大,使汽车的非悬挂质量增大,而不利于汽车的行驶平顺性。制动鼓与轮辋之间应有相

40、当的间隙,此间隙一般不应小于2030mm,以利于散热通风,也可避免由于轮辋过热而损坏轮胎。由此间隙要求及轮辋的尺寸即可求得制动鼓直径D的尺寸。另外,制动鼓直径D与轮辋直径之比的一般范围为:轿车 D=0.640.74货车 D=0.700.83捷达轿车轮辋为14in,得到=14×25.4=355.6mm 表3-1轮辋直径/in1213141516制动鼓内径/mm轿车180200240260-货车220240260300320参考上表并结合实际情况,取D=0.65。得到制动鼓内径为230mm,所以制动鼓半径为115mm。制动鼓壁厚的选取主要是从刚度和强度方面考虑。壁厚取大些也有助于增大热容

41、量,但试验表明,壁厚从11mm增至20mm,摩擦表面平均最高温度变化并不大。一般铸造制动鼓的壁厚:轿车为712mm,中、重型货车为1318mm。由于本设计的对象是轿车,所以选取制动为10mm。3.5.2.制动蹄摩擦衬片的包角和宽度b摩擦衬片的包角可在=90°120°范围内选取,试验表明,摩擦衬片包角=90°100°时,磨损最小,制动鼓温度也最低,且制动效能最高。再减小虽有利于散热,但由于单位压力过高将加速磨损。一般也不宜大于120°,因过大不仅不利于散热,而且易使制动作用不平顺,甚至可能发生自锁。本次设计摩擦衬片的包角取110°。摩擦

42、衬片宽度b较大可以降低单位压力、减少磨损,但过大则不易保证与制动鼓全面接触。通常是根据在紧急制动时使其单位压力不超过2.5MPa的条件来选择衬片宽度b的。设计时应尽量按摩擦片的产品规格选择b值。另外,根据国外统计资料可知,单个鼓式车轮制动器总的衬片摩擦面积随汽车总质量的增大而增大,而单个摩擦衬片的摩擦面积A又决定于制动鼓半径R、衬片宽度b及包角,即 式中是以弧度(rad)为单位,当A,R,确定后,由上式也可初选衬片宽b的尺寸。制动器各蹄摩擦衬片总摩擦面积愈大,则制动时产生的单位面积正压力愈小,从而磨损亦愈小。摩擦衬片的摩擦面积A取200cm,衬片宽b为45mm。见表3-2;表3-2汽车类别汽车

43、总质量m/t单个制动器的衬片摩擦面积轿车0.91.51.52.51002002003003.5.3.摩擦衬片起始角摩擦衬片起始角如图3-4所示。一般是将衬片布置在制动蹄外缘的中央,并令。有时为了适应单位压力的分布情况,将衬片相对于最大压力点对称布置,以改善制动效能和磨损的均匀性。则=353.5.4.张开力P的作用线至制动器中心的距离在保证制动轮缸或凸轮能够布置于制动鼓内的条件下,应使距离尽可能地大,以提高其制动效能。初步设计时可暂定左右。则=92mm3.5.5.制动蹄支销中心的坐标位置是k与c如图3-4所示,制动蹄支销中心的坐标尺寸k是应尽可能地小,以使尺寸c尽可能地大,初步设计可暂定c=0.

44、8R左右。则c=92mm3.5.6摩擦片摩擦系数选择摩擦片时不仅希望其摩擦系数要高些,更要求其热稳定性要好,受温度和压力的影响要小。不能单纯地追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性的要求,后者对蹄式制动器是非常重要的。各种制动器用摩擦材料的摩擦系数的稳定值约为0.30.5,少数可达0.7。一般说来,摩擦系数愈高的材料,其耐磨性愈差。所以在制动器设计时并非一定要追求高摩擦系数的材料。当前国产的制动摩擦片材料在温度低于250时,保持摩擦系数=0.350.40已无大问题。因此,在假设的理想条件下计算制动器的制动力矩,取=0.3可使计算结果接近实际。

45、因此取=0.3。第4章 制动器主要零部件的结构设计4.1制动鼓制动鼓应具有非常好的刚性和大的热容量,制动时其温升不应超过极限值。制动鼓的材料应与摩擦衬片的材料向匹配,以保证具有高的摩擦系数并使工作表面摩擦均匀。中型,重型载货汽车和中型、大型客车多采用灰铸铁HT200或合金铸铁制造的制动鼓;轻型货车和一些轿车则采用钢板冲压成形的辐板与铸铁鼓筒部分铸成一体的组合制动鼓;带有灰铸铁内鼓筒的铸铝合金制动鼓在轿车上得到了日益广泛的应用;铸铁内鼓筒与铝合金也是铸到一起的,这中内镶一层珠光体组织的灰铸铁作为工作表面,其耐磨性和散热性都很好,而且减少了质量。本设计采用的制动鼓材料:铸铁内鼓筒与铝合金铸到一起.

46、4.2制动蹄轿车和微型,轻型载货汽车的制动蹄管饭采用T形型钢碾压或钢板冲压-焊接制成;大吨位载货汽车的制动蹄则多采用铸铁、铸钢或铸铝合金制成。制动蹄的结构尺寸和断面形状应保证其刚度好,单小型车用钢板制的制动蹄腹板上有时开有一、两条径向槽,使蹄的弯曲刚度小些,以便使制动蹄摩擦衬片与制动鼓之间的接触压力均匀,因而使衬片的磨损较为均匀,并可减少制动时的尖叫声。制动蹄腹板和翼缘的厚度,轿车的约为3mm5mm;货车的约为5mm8mm。摩擦片的厚度,轿车的多为4.5mm5mm。本设计制动蹄选用:T形45号钢制动蹄腹板厚度:5mm制动蹄翼缘厚度:5mm摩擦衬片厚度:5mm4.3制动底板 制动底板是除制动鼓外

47、制动器各零件的安装基体,应保证各安装零件相互间的正确位置。制动底板承受着制动器工作时的制动反力矩,因此它应该有足够的刚度。刚度不足会使制动力矩减小,踏板行程增大,衬片磨损也不均匀。本设计底板的材料:45号钢.4.4制动蹄的支承为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,应使支承位置可调。本设计采用支承销由45号钢制造并高频淬火。其支座为可锻铸铁(KTH37012)或球墨铸铁(QT40018)件。4.5制动轮缸制动轮缸的刚起由灰铸铁HT250制成。其缸筒为通孔,需镗磨。活塞由铝合金制造。活塞外端压有钢制的开槽顶块,以支承插入槽中的制动蹄腹板端部或端部接头。轮缸的工作腔

48、由装在活塞上的橡胶密封圈或靠在活塞内的橡胶皮碗密封。4.6制动器间隙 制动鼓(制动盘)与摩擦衬片(摩擦衬块)之间在未制动的状态下应有工作作间隙,以保证制动鼓(制动盘)能自由转动。一般,鼓式制动器的设定间隙为0.20.5mm;盘式制动器的为0.10.3mm。此间隙的存在会导致踏板或手柄的行程损失,因而间隙量应尽量小。考虑到在制动过程中摩擦副可能产生机械变形和热变形,因此制动器在冷却状态下应有的间隙应通过试验来确定。另外,制动器在工作过程中会因为摩擦衬片(衬块)的磨损而加大,因此制动器必须设有间隙调整机构。 为了保持良好的制动效率,制动蹄与制动鼓之间要有一个最佳间隙值。随着摩擦衬片磨损,制动蹄与制

49、动鼓之间的间隙增大,需要有一个调整间隙的机构。过去的鼓式制动器间隙需要人工调整,用塞尺调整间隙。现在轿车鼓式制动器都是采用自动调整方式,摩擦衬片磨损后会自动调整与制动鼓间隙。当间隙增大时,制动蹄推出量超过一定范围时,调整间隙机构会将调整杆(棘爪)拉到与调整齿下一个齿接合的位置,从而增加连杆的长度,使制动蹄位置位移,恢复正常间隙。鼓式制动器的间隙调整是通过凸轮轴和制动气室之间的连接杆系 制动臂实现的,在制动臂的内部有一蜗轮和蜗杆副,通过调整蜗杆转动蜗轮带动凸轮转动,消除摩擦副间的多余间隙。第5章 校 核 5.1制动器的热容量和温升的核算应核算制动器的热容量和温升是否满足如下条件: 式中 制动鼓的

50、总质量;初选=18kg与制动鼓相连的受热金属件(如轮毂、轮辐、轮辋、制动鼓等)的总质量;初选=28kg制动鼓材料的比热容,对铸铁=482J(kg·K),对铝合金c=880J(kg·K);=482J(kg·K)制动鼓的温升(一次由=30kmh到完全停车的强烈制动,初选=13 温升不应超过15);=288236 JKL满载汽车制动时由动能转变的热能,因制动过程迅速,可以认为制动生成的热能全部为前、后制动器所吸收,并按前、后轴制动力的分配比率分配给前、后制动器,即 式中 满载汽车总质量;=1525kg汽车制动时的初速度,可取; 汽车制动器制动力分配系数,=0.656=112545 JK =59017.5 JK+=112545+59017.5=171562.5 JK而288236 JK 171562.5 JK 符合要求所以制动器的热容量与升温符合要求。5.2 制动器的校核5.2.1摩擦衬片所受力的校核为了保证所设计的合理性,能够使制动器达到设计的目的,一定要满足: 4rP&

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论