




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习1.5定积分的概念15.1曲边梯形的面积15.2汽车行驶的路程15.3定积分的概念课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习【课标要求】1了解“以直代曲”、“以不变代变”的思想方法2会求曲边梯形的面积和汽车行驶的路程3了解定积分的概念4了解定积分的几何意义和性质【核心扫描】1“以直代曲”、“以不变代变”的思想的考查(热点)2学会求定积分(重难点)课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习自学导引1连续函数如果函数yf(x)在某个区间i上的图象是一条连续不断的曲线,
2、那么就把它称为区间i上的 函数连续课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习2曲边梯形的面积(1)求曲边梯形面积的思想:如图所示,我们求yf(x)与x轴所围成的在区间0,1上的曲边梯形的面积,我们可以采用分割,以直代曲、作和,逼近的思想方法求出其面积课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习即把区间0,1分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形对每个小曲边梯形“以直代曲”,即用 的面积近似代替 的面积,得到每个 面积的近似值,对这些近似值求和,就得到 面积的近似值可以想象,随着拆分越来越细,近似程度就会越来越好也即用化归为计
3、算 和逼近的思想方法求出曲边梯形的面积矩形小曲边梯形小曲边梯形曲边梯形矩形面积课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习平行于x轴的直线段 课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习3求变速直线运动的位移(路程)如果物体做变速直线运动,速度函数为vv(t),那么也可以采用 , , , 的方法,求出它在atb内所作的位移s.求解方法与求曲边梯形面积类似,我们采取“以不变代变”的方法,把求变速直线
4、运动的路程问题,化归为求匀速直线运动的路程问题即将区间a,b等分成n个小区间,在每个小区间上,由于v(t)的变化很小,可以认为汽车近似于做匀速直线运动,从而求得汽车在每个小区间上行驶路程的近似值,再求和得s的近似值,最后让n趋向于无穷大就得到s的精确值分割近似代替求和取极限课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习想一想:求曲边梯形面积时,对曲边梯形进行“以直代曲”,怎样才能尽量减小求得的曲边梯形面积的误差?提示为了减小近似代替的误差,需要先分割再分别对每个小曲边梯形“以直代曲”,而且分割的曲边梯形数目越多,得到的面积的误差越小课堂讲练互动课堂讲练互动活页规范训练
5、活页规范训练课前探究学习课前探究学习定积分 课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习积分下限 积分上限 积分区间 被积函数 积分变量 被积式 课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习直线xa xb y0 课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习6定积分的性质课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习名师点睛1求曲边梯形面积(1)曲边梯形:由直线xa,xb(ab),y0和曲线yf(x)所围成的图形称为曲边梯形(如图)(2)求曲边梯形面积的方法与步骤:分割:把区间a,b分成
6、许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图);近似代替:对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图);课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习求和:把近似代替得到的每个小曲边梯形面积的近似值求和;取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课
7、前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习(2)定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即 (称为积分形式的不变性),另外定积分 与积分区间a,b息息相关,不同的积分区间,所得的值也就不同,例如的值就不同课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习题型一求曲边梯形的面积【例1】 求抛物线f(x)1x2与直线x0,x1,y0所围成的曲边梯形的面积s.思路探索 要求这个曲边梯形的面积,可以按分割,近似代替、求和、取极限四个步骤进行课堂讲练互动课堂讲练互动活页规范训练活页
8、规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习 分割、近似代替、求和、取极限是求曲边梯形面积的四个步骤,求曲边梯形的面积时需理解以下几点:思想:以直代曲;步骤:化整为零以直代曲积零为整无限逼近;关键:以直代曲;结果:分割越细,面积越精确课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲
9、练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习 求变速直线运动的路程问题,方法和步骤类似于求曲边梯形的面积,仍然利用以直代曲的思想,将变速直线运动问题转化为匀速直线运动问题,求解过程为:分割、近似代替、求和、取极限课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习题型三利用定积分定
10、义计算定积分【例3】 利用定积分定义计算 (1x)dx的值思路探索 将区间1,2等分为n个小区间,然后用小矩形的面积近似替代小梯形的面积,再求其和,最后对其和取极限即得所求定积分课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课
11、前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习题型四定积分几何意义的应用【例4】 用定积分的意义求下列各式的值课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习【变式4】 利用定积分的几何意义求:课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习课堂讲练互动课堂讲练互动活页规范训练活页规范训练课前探究学习课前探究学习【示例】 如图所示,求图中曲边梯形的面积(只要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省临沂市兰陵县第一中学2025届高三第三次适物理试题含解析
- 湘潭医卫职业技术学院《分子生物学韩》2023-2024学年第二学期期末试卷
- 山东省菏泽市第一中学2024-2025学年高三“零诊”考试物理试题含解析
- 山西水利职业技术学院《钢琴即兴伴奏(2)》2023-2024学年第二学期期末试卷
- 四川省成都市青羊区石室教育集团2025年初三期末物理试题含解析
- 四川师范大学《智能信息处理》2023-2024学年第二学期期末试卷
- 井陉矿区2025届数学三下期末质量检测试题含解析
- 四川铁道职业学院《大学体育(4)》2023-2024学年第二学期期末试卷
- 江西信息应用职业技术学院《电机学》2023-2024学年第二学期期末试卷
- 山西警官职业学院《小学数学课程标准与教材研究》2023-2024学年第二学期期末试卷
- 商标分类(1-45类小类明细)
- 跨境电商与数字贸易合作
- 大气污染控制工程教案-08-09
- 数字城管信息采集外包服务投标方案(技术方案)
- 家庭猪场养殖模式
- 重庆大学附属肿瘤医院麻醉科新增术中放疗场所环评报告
- 消费者起诉状模板范文
- 2022年工程机械设备租赁服务方案(含应急处理方案、保障措施)
- (完整版)外科护理学知识点整理
- 2019版《压力性损伤的预防和治疗:临床实践指南》解读
- 在那遥远的地方课件
评论
0/150
提交评论