版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、开放性实验报告实 验 名 称 超声波预警系统 学 生 姓 名 学 号 系 、专 业 电气工程系 指 导 教 师 2014年12月16日摘 要随着科学技术的快速发展,超声波将在科学技术中的应用越来越广。本文对超声波传感器测距和测速的可能性进行了理论分析,利用模拟电子、数字电子、微机接口、超声波换能器、以及超声波在介质的传播特性等知识,采用以STC89C52单片机为核心的低成本、高精度、微型化数字显示超声波测距的硬件电路和软件设计方法在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。为了保证超声波测距传感器的可靠性和稳定性,采取了相应的抗干扰措施。就超声波的传播特性,超声波换能
2、器的工作特性、超声波发射、接收、超声微弱信号放大、波形整形、速度变换、语音提示电路及系统功能软件等做了详细说明.实现障碍物的距离测试、显示和报警,超声波测距范围30CM-300CM,精度在一厘米左右。这套系统软硬件设计合理、抗干扰能力强、实时性良好,经过系统扩展和升级,可以用于倒车雷达、建筑施工工地以及一些工业现场,例如:测量液位、井深、管道长度等场合。可以广泛应用于工业生产、医学检查、日常生活、无人驾驶汽车、自动作业现场的自动引导小车、机器人、液位计等。关键词: STC89C52,超声波,LCD,距离测量,速度测量 目 录1 引 言11.1 课题背景11.2 课题设计的意义:11.3 超声波
3、测距在汽车上应用的介绍:12 课题的方案设计与论证32.1 系统总体设计32.2 设计方案的论证53 系统的硬件结构设计63.1 单片机的选择63.2 发射电路的设计73.3 接收电路的设计84 系统软件的设计94.1 超声波汽车防撞电路的算法设计 104.2 主程序流程图104.3 超声波发生子程序和超声波接收中断程序115 调试12总 结14参考文献16附录:17 1 引 言1.1 课题背景随着经济的发展与汽车科学技术的进步,公路交通呈现出行驶高速化、车流密集化和驾驶员非职业化的趋势。同时,随着汽车工业的飞速发展,汽车的产量和保有量都在急剧增加。但公路发展、交通管理却相对落后,导
4、致了交通事故与日剧增,城市里尤其突出。智能交通系统ITS是目前世界上交通运输科学技术的前沿技术,它在充分发挥现有基础设施的潜力,提高运输效率,保障交通安全,缓解交通赌塞,改善城市环境等方面的卓越效能,已得到各国政府的广泛关注。中国政府也高度重视智能交通系统的研究开发与推广应用。汽车防撞系统作为ITS发展的一个基础,它的成功与否对整个系统有着很大的作用。从传统上说,汽车的安全可以分为两个主要研究方向:一是主动式安全技术,即防止事故的发生,该种方式是目前汽车安全研究的最终目的;二是被动式安全技术,即事故发生后的乘员保护。目前汽车安全领域被动安全研究较多,主要从安全气囊、ABS(防抱死系统)和悬架等
5、方面着手,以保证驾乘人员的安全。从经济性和安全性两方面来说,这些被动安全措施是在事故发生时刻对车辆和人员进行保护,有很大的局限性,因而车辆的主动安全研究尤为重要,引出了本文研究的基于单片机的超声波测距系统。这个系统是一种可向司机预先发出视听语音信号的探测装置。它安装在汽车上,能探测企图接近车身的行人、车辆或周围障碍物;能向司机及乘员提前发出即将发生撞车危险的信号,促使司机采取应急措施来应付特殊险情,避免损失。1.2 课题设计的意义随着现代社会工业化程的发展,汽车这一交通工具正为越来越多的人所用,但是随之而来的问题也显而易见,那就是随着车辆的增多,交通事故的频繁发生,由此导致的人员伤亡和财产损失
6、数目惊人。对于公路交通事故的分析表明,80%以上的车祸事由于驾驶员反应不及所引起的,超过65%的车辆相撞属于追尾相撞,其余则属于侧面相撞。奔驰汽车公司对各类交通事故的研究表明:若驾驶员能够提早1S意识到有事故危险并采取相应的正确措施,则绝大多数的交通事故都可以避免。因此,大力研究开发如汽车防撞装置等主动式汽车辅助安全装置,减少驾驶员的负担和判断错误,对于提高交通安全将起到重要的作用。显然,此类产品的研究开发具有极大的实现意义和广阔的应用前景。1.3 超声波测距在汽车上应用的介绍: 超声波倒车测距仪( 俗称电子眼)是汽车倒车防撞安全辅助装置 ,能以声音或者更为直观的数字形式动态显示周围障碍物的情
7、况。其较早的产品是用蜂鸣器报警 ,蜂鸣声越急 ,表示车辆离障碍物越近。后继的产品可以显示车后障碍物离车体的距离。其大多数产品探测范围在0.41.5 m,有的产品能达到 0.352.5 m,并有距离显示、声响报警、区域警示和方位指示 ,有些产品还具备开机自检功能。目前市场上还出现了具有语音报警功能的产品。这些产品存在的主要问题是测量盲区大 ,报警滞后 ,未考虑汽车制动时的惯性因素 ,使驾驶者制动滞后 ,抗干扰能力不强 ,误报也较多。汽车防撞雷达之所以能实现防撞报警功能, 主要有超声波这把无形尺子, 它测量最近障碍物的距离, 并告诉给车主。其实超声测距原理简单: 它发射超声波并接收反射回波, 通过
8、单片机计数器获得两者时间差t, 利用公式S=Ct /2计算距离, 其中S为汽车与障碍物之间的距离, C为声波在介质中的传播速度。 本文介绍的超声测距系统共有2只超声波换能器( 俗称探头) , 分别布置在汽车的后左、后右2个位置上。能检测前进和倒车方向障碍物距离, 通过后视镜内置的显示单元显示距离和方位, 发出一定的声响, 起到提示和警戒的作用。系统采用一片STC89C52单片机对两路超声波信号进行循环采集。超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收
9、器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离 。测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测
10、量精度理论上可以达到毫米级。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。 超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本设计属于近距离测量,可以采用常用的压电式超声波换能器来实现触发单元。利用超声波测距的工作,就可以根据测量发射波与反射波之间的时间间隔,从而达到测量距离的作用。其主要有三种测距方法: (1)相位检测法,相位检测法虽然精度高,但检测范围有限; (2)声波幅值检测法,声波幅值检测法易受反射波的影响; (3)渡越时间检测法
11、,渡越时间检测法的工作方式简单,直观,在硬件控制和软件设计上都非常容易实现。其原理为:检测从发射传感器发射超声波,经气体介质传播到接收传感器的时间,这个时间就是渡越时间。 本设计的超声波测距就是使用了渡越时间检测法。在移动车辆中应用的超声波传感器,是利用超声波在空气中的定向传播和固体反射特性(纵波),通过接收自身发射的超声波反射信号,根据超声波发出及回波接收的时间差和传播速度,计算传播距离,从而得到障碍物到车辆的距离。2 课题的方案设计与论证 2.1 系统总体设计系统总体框图 构成超声测距系统的电路功能模块包括发射电路、接收电路、显示电路、核心功能模块单片机控制器及一些辅助电路。采取收发分离方
12、式有两个好处:一是收发信号不会混叠,接收探头所接收到的纯为反射信号;二是将接收探头放置在合适位置,可以避免超声波在物体表面反射时造成的各种损失和干扰,提高系统的可靠性。 超声波发射器放大电路超声波接收器放大电路检波电路定时器单片机控制显示器报警系统图2-1 超声波汽车防撞原理框图根据设计要求并综合各方面因素,选择了西安立宇电子科技有限公司的超声波测距传感器 TCT4016T/R(T 表示发射传感器,R表示接收传感器),最大探测距离为 6m,发射扩散角为 60度。超声波传感器有两块压电晶片和一块共振板。当它的两电极加脉冲信号(触发脉冲) , 若其频率等于晶片的固有频率时,压电晶片就会发生共振,并
13、带动共振板振动,从而产生超声波。相反, 电极间未加电压,则当共振板接收到回波信号时,将压迫两压电晶片振动,从而将机械能转换为电信号,此时的传感器就成了超声波接收器。超声波传感器是一种采用压电效应的传感器,常用的材料是压电陶瓷。由于超声波在空气中传播时会有相当的衰减,衰减的程度与频率的高低成正比;而频率高分辨率也高,故短距离测量时应选择频率高的传感器,而长距离的测量时应用低频率的传感器。超声波传感器用来分析共振频率附近的超声波换能器的特性:换能器的器械能用Qm ;电能用Qe 表示。Q 恰好是电路的串联支路的Q 值。设换能器在空载( Z1 = 0) 和有载( Z1 = R1) 时的Q 值分别为Qm
14、0 、Qm ,则有超声波换能器的工作效率为相临两片的压电陶瓷片极化方向相反,芯片的数目成偶数,以使前后金属盖板与同一极性的电极相连,否则在前后盖板与芯片之间要垫以绝缘垫圈,会导致结构不必要的增大,两芯片之间,芯片与金属盖板间通常以薄黄铜片(厚度小于0.1mm),作为焊接电极引线用;芯片,电极铜片用强力胶胶合,在压电组件的中央部分用结合轴与圆锥状谐振子连成一体,圆锥状谐振子的边缘部分装有圆环弹性橡胶减振器,使之与外壳固定,起声阻匹配作用。在电声变换部分的前面的超声波束整形板,是对应圆锥状谐振子的振动模式设置的几个开口,使超声波波束指向尖锐,吸声片吸收多余反射声波。目前市面上出售的超声波传感器种类
15、有通用型,拓宽型,宽带域型,防水型和高频型等这几类。虽然通用型超声波传感器有频率带宽较窄的缺点,但是却可以换来高灵敏度,抗噪声干扰强的优点。超声波基本应用电路主要分为三类: 1)直射型,主要用于遥控及报警电路 2)分离反射型,主要用于测距,料位测量等电路3)反射型,主要用于材料的探伤,测厚电路。鉴于成本的考虑,选用了普通的T/R-40系列的超声波发射/接收传感器。T/R-40系列超声波传感器典型的工作频率为(39-41)KHZ,其具体参数见表2.1 表2.1 外形尺寸(T/R-4XX中的“XX”表示传感器的外径尺寸)型号A(mm)B(mm)C(mm)D(mm)T/R-40-1212.79.56
16、.28.5T/R-40-1616.212.29.210.0T/R-40-18A18.014.210.811.8T.R-40-24A23.814.610.211.8 传感器位置 由于是测距系统是采用超声波发射和接收分离反射型结构,所以发射头和接收头应该在同一平行直线上。出于距离和发射夹角所引起的误差以及超声波信号在传播过程中衰减问题的考虑,发射和接收探头距离不可以太远,而又为了避免发射头对接收头接收信号产生的干扰,二者也不能间隔太近。经过参考前人的经验以及调试时的实际情况,应保持超声波发射头和接收头中心轴线平行并相距4-8cm即可。2.2 设计方案的论证超声波探测技术主要用于中程测距、结构探伤、
17、智能控制等领域,超声波换能器是其核心部件,换能器按其工作介质可分为气相、液相和固相换能器;按其发射波束宽度可分为宽波束和窄波束换能器;按其工作频率又可分为38KHz、40KHz等不同等级。本设计选用气相、窄波束、40KHz的超声波换能器。当利用超声波探测器测距时常用两种方法强度法和反射时间法,强度法是利用声波在空气中的传输损耗值来测量被测物的距离,被测物越远其反射信号越弱,根据反射信号的强弱就可以知道被测物的远近,但在使用这种方法时由于换能器之间的直接耦合信号很难消除,在放大器增益较高时这一直接耦合信号就可使放大器饱和从而使整套系统失效,由于直接耦合信号的影响强度法测距只适合较短距离的且精度要
18、求不高的场合。反射时间法其原理是利用检测声波发出到接收到被测物反射回波的时间来测量距离,对于距离较短和要求不高的场合我们可认为空气中的声速为常数,我们通过测量回波时间T利用公式S=V×(T/2)(其中S为被测距离、V为空气中声速、T为回波时间()计算出路程,这种方法不受声波强度的影响,直接耦合信号的影响也可以通过设置“时间门”来加以克服,因此这种方法非常适合较远距离的测距,如果对声速进行温度修订,其精度还可进一步提高,本设计中选用此方法。而超声波传感器一般要在40KHZ才能得到最大的震荡,超声波才能传的更远,而要产生40KHZ的方波可以直接通过单片机输出PWM信号或通过外部震荡电路来
19、产生,这里我采用的是52单片机,没有多余的资源完成这么多工作,故摒弃了由单片机直接产生PWM信号的方式,而采用了外部电路产生。单片机的功能特点及测距原理 40KHZ的发射频率由NE555提供给软件进行处理控制发射及停止,回波经过STC89C52对接收到的信息进行处理后,被测的距离在LCD上显示,显示部分采用动态扫描显示。满足显示精度;若该距离小于预置的汽车低速安全刹车范围(如:1m或0.5m),报警电路发出适当的警告提示音,由P2.4口的蜂鸣器输出控制报警电路的工作。 3 系统的硬件结构设计3.1 单片机的选择在系统的设计中,选择合适的系统核心器件就成为能否成功完成设计任务的关键,而作为控制系
20、统核心的单片机的选择更是重中之重。目前各半导体公司、电气商都向市场上推出了形形色色的单片机,并提供了良好的开发环境。选择好合适的单片机可以最大地简化单片机应用系统,而且功能优异,可靠性好,成本低廉,具有较强的竞争力。目前,市面上的单片机不仅种类繁多,而且在性能方面也各有所长。 STC89系列单片机是MCS-51系列单片机的派生产品。它在指令系统、硬件结构和片内资源上与标准8052单片机完全兼容,DIP40封装系列与8051为pin-to-pin兼容。STC89系列单片机高速(最高时钟频率90MHz),低功耗,在系统/在应用可编程(ISP,IAP),不占用户资源。根据本系统的实际情况,选择STC
21、89C52单片机, 单片机最小系统电路图如下图3-6所示: 图 3-6 单片机最小系统图 3.2 发射电路的设计 本系统采用一个稍加变化的555多谐振荡器电路来产生40KHZ的方波。并由单片机I/O口来控制其发送与否。它具有占空比连续可调的优点,电路如下图所示。为了能连续调节占空比并能调节振荡频率,在555的第6脚和第7脚之间接有W1、W2、R2组成的调节网络。对C1充电时,电流是通过R1、W2、和W1,放电时,通过W1、W2、和R2。当R1R2,W2调到中心点或不用W2时,因充放电时间基本相等,其占空比约为50%,此时调节W1仅改变频率,占空比不变。如W2调节偏离中心点,再调节W1,不仅振荡
22、频率改变了,而对占空比也有影响。W1不变,调节W2时,仅可改变占空比而对频率无影响。因此,使用电路时,应首先调节W1,使频率至规定值,再调节W2以获得合适的占空比。为保证驱动能力,又为了在低电压下工作,故采用来放大信号,提高发射功率。输出40KHZ波形如图3-7。图 3-7 输出波形图发射电路图 38图3-8 超声波发射电路 3.3 接收电路的设计 集成电路CX20106A是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控常用的载波频率38KHZ与测距的超声波频率40KHZ较为接近,可以利用它做超声波的检测接收电路。下面对红外遥控接收器集成电路CX20106A做一个简要
23、的介绍。CX20106A是日本索尼公司生产的彩电专用红外遥控接收器,采用单列8脚直插式,超小型封装。CX20106A的基本性能如下:(1)电源电压典型值5V,最大17V。(2)电源电流1.12.5mA(典型值为1.8mA)。(3)输出低电平0.2V。(4)电压增益7779dB。(5)输入阻抗为27k。(6)滤波器中心频率f0为3060kHz。其内部结构如下图3-10所示。 图3-10 CX20106A内部结构图图3-11 声波接收电路3.4 显示报警模块的设计 液晶显示器以其微功耗、体积小、显示内容丰富、超薄轻巧的诸多优点,在袖珍式仪表和低功耗应用系统中得到越来越广泛的应用。随着科技的发展,液
24、晶显示模块的应用前景将更加广阔。本系统选用LCD液晶ts128643显示器做为显示模块。参考ts12864-3与的单片机的引脚功能画出它们连接的原理图3-12 如下:图3-12 12864与单片机的连接图4 系统软件的设计软件设计的主要思路是将预置、发射、接收、显示、声音报警等功能编成独立的模块,在主程序中采用键控循环的方式,当按下控制键后,在一定周期内,依次执行各个模块,调用预置子程序,发射子程序、查询接收子程序、定时子程序,并把测量的结果进行分析处理,根据处理结果决定显示程序的内容以及是否调用声音,显示报警程序。当测得距离小于预置距离时,声音,显示报警程序被调用。 主程序首先是对系统环境初
25、始化,设置定时器T0工作模式为16位定时计数器模式。置位总中断允许位EA并给显示端口P0和P2清0。然后调用超声波发生子程序送出一个超声波脉冲,为了避免超声波从发射器直接传送到接收器引起的直射波触发,需要延时约01 ms(这也就是超声波测距仪会有一个最小可测距离的原因)后,才打开外中断0接收返回的超声波信号。超声波汽车防撞电路的软件设计主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。我们知道C语言程序有利于实现较复杂的算法,汇编语言程序则具有较高的效率且容易精细计算程序运行的时间,而超声波测距仪的程序既有较复杂的计算(计算距离时),又要求精细计算程序运行时间(超声波测距时)
26、,所以控制程序可采用C语言和汇编语言混合编程。 4.1 超声波汽车防撞电路的算法设计 超声波测距的原理为超声波发生器T在某一时刻发出一个超声波信号,当这个超声波遇到被测物体后反射回来,就被超声波接收器R所接收到。这样只要计算出从发出超声波信号到接收到返回信号所用的时间,就可算出超声波发生器与反射物体的距离。距离的计算公式为: d=s/2=(c×t)/2 其中,d为被测物与测距仪的距离,s为声波的来回的路程,c为声速,t为声波来回所用的时间。 在启动发射电路的同时启动单片机内部的定时器
27、T0,利用定时器的计数功能记录超声波发射的时间和收到反射波的时间。当收到超声波反射波时,接收电路输出端产生一个负跳变,在INT0或INT1端产生一个中断请求信号,单片机响应外部中断请求,执行外部中断服务子程序,读取时间差,计算距离。 4.2 主程序流程图 软件分为两部分,主程序和中断服务程序,主程序完成初始化工作、各路超声波发射和接收顺序的控制。 定时中断服务子程序完成三方向超声波的轮流发射,外部中断服务子程序主要完成时间值的读取、距离计算、结果的输出等工作。 超声波测距时工作过程如下:(1) 由单片机发出控制NE555产生40KHZ脉冲信号。(2) 脉冲信号通过超声波发射换能器发出超声波。(
28、3) 单片机在发送脉冲时刻开始计时。(4) 超声波遇到障碍物后回波被超声波换能器接收。(5) 读取T0口计数值。(6) 数据计算。(7) 显示报警。主程序首先是对系统环境初始化,设置定时器T0工作模式为16位定时计数器模式。置位总中断允许位EA并给显示端口P0和P1清0。然后调用超声波发生子程序送出一个超声波脉冲,为了避免超声波从发射器直接传送到接收器引起的直射波触发,需要延时约0.1 ms(这也就是超声波测距仪会有一个最小可测距离的原因)后,才打开外中断0接收返回的超声波信号。由于采用的是12 MHz的晶 振,计数器每计一个数就是1s,当主程序检测到接收成功的标志位后,将计数器T0中的数(即
29、超声波来回所用的时间)按式(2)计算,即可得被测物体与测距仪之间的距离,设计时取20时的声速为344 m/s则有: d=(c×t)/2=172T0/10000cm (2) 其中,T0为计数器T0的计算值。 测出距离后结果将以十进制BCD码方式送往LCD显示约0.5s,然后再发超声波脉冲重复测量过程。为了有利于程序结构化和容易计算出距离,主程序采用C语言编写。4.3 超声波发生子程序和超声波接收中断程序 超声波发生子程序的作用是通过P1.0端口发送脉冲信号控制555芯片超声波的发射(频率约40kHz的方波)占空比不一定为50%,脉冲宽度为1
30、2s左右,同时把计数器T0打开进行计时。超声波发生子程序较简单,但要求程序运行准确,所以采用汇编语言编程。 (1)使用外部中断INT0来检测回波,使其工作于下降沿触发方式(IT0=1)。当检测到回波信号,触发并进入中断,同时停止发射超声波和停止计时器T0,在中断服务程序中读取T1的值,并计算测量结果。(2)使用T0作为计时器,工作方式为方式1。发射超声波的同时开定时器T1。如果定时时间结束仍没有接收到回波信号,则进入T1溢出中断服务程序,关闭外部中断INT0和T1溢出中断,重新开始新的一轮测试。由于T0工作方式为方式1时,最大可定时65ms,即在理想情况下可测最大距离为0.065*3
31、24/2=10.5m。而考虑实际情况下并不需测这么远的距离或系统很难探测到这么远的距离.但为了方便计算,所以初值赋为0. 超声波测距仪主程序利用外中断0检测返回超声波信号,一旦接收到返回超声波信号(即INT0引脚出现低电平),立即进入中断程序。进入中断后就立即关闭计时器T0停止计时,并将测距成功标志字赋值1。如果当计时器溢出时还未检测到超声波返回信号,则定时器T0溢出中断将外中断0关闭,并将测距成功标志字赋值2以表示此次测距不成功。 前方测距电路的输出端接单片机INT0端口,中断优先级最高,左、右测距电路的输出通过与门IC3A的输出接单片机INT1端口,同时单片机P1.3和P1.4接
32、到IC3A的输入端,中断源的识别由程序查询来处理,中断优先级为先右后左。 5 调试 由于本设计涉及的模块比较多,包括了超声波测距模块,单片机模块,显示报警,所以调试起来比较费力,设计的不定因素也比较多,所以,调试的时候采用了分块调试的方法,排除了各个模块的干扰。在电路安装完毕后,不要急于通电测试,而首先必须做好以下调试前的检查工作。 检查连线情况:经常碰到的有错接(即连线的一端正确,而另一端误接)、少接(指安装时漏接的线)及多接(指在电路上完全是多余的连线),等连线错误。检查连线可以直接对照电路原理图进行,但若电路中布线较多,则可以以元器件(如运放、三极管)为中心,依次检察查其引脚的有关连线,
33、这样不仅可以查出错接或少接的线,而且也较易发现多余的线。 为确保连线的可靠,在查线的同时,还可以用万用表电阻档对接线作连通检查,而且最好在器件外引线处测量,这样有可能查出某些“虚焊”的隐患。 检查元器件安装情况:元器件的检查,重点要查集成运放、三极管、二极管、电解电容等外引线与极性有否接错,以及外引线间有否短路,同时还须检查元器件焊接处是否可靠。这里需要指出,在焊接前,必须对元器件进行检测,确保元器件能正常工作,以免给调试带来不必要的麻烦。 检查电源输入端与公共接地端间有否短路在通电前,还需用万用表检查电源输入端与地之间是否存短路,若有则须进一步检查其原因。 在完成了以上各项检查并确认无误后,
34、才可通电调试,但此时应注意电源的正、负极性不能接反。在检查超声波发射电路时,在未加单片机使能控制的情况下,通电待系统工作后,用示波器观察NE555芯片的3脚。若输出波形不符合要求,可通过调节R9和R10来调节输出波形,直到得到要求的占空比为50%的40KHZ方波。调好发射电路后,启用接收电路。在超声波接收探头未接收到信号的情况下,用示波器观察其两引脚,测得最大干扰电压波形为40KHZ的正弦波,幅值20mv。在超声波接收探头接收信号的情况下,起初测得信号放大电路的一级放大输出为幅值5V的正弦波,但是二级输出不论接收探头有否接收到信号,恒输出一11V高电平。检查电路参数后认为是NE555放大倍数过
35、大,形成自激振荡,所以把原来100*100的放大倍数降为100*10。再测二级输出,在探测距离较近时输出波形近似方波,调试成功。超声波这个部分相对来说比较复杂,特别是涉及到了传感器,受天气和温度的干扰比较大,电路内部的干扰控制也是一个难点,所以我选择了另外用了一块扩展板来制作这部分电路,而且用电感来隔离各部分的干扰。考虑到本设计只是一次学习过程,对性能要求不是很高,所以采用了干电池供电这样的方法,再有就是测距的时候容易受到地面的漫反射干扰,所以增益电阻不能取得太小,这样测距的灵敏度会受到一定影响,不过经过多次调试,测距精度方面误差基本上能控制在5厘米以内,测距距离大概3-4米。调试过程把烧录好
36、的芯片放置在电路中,接上电源,检验程序是否如自己所设计的那样可以实现所要求的功能。如果电路板上的结果和设想的不同,由于在硬件检查部分已经确定了硬件没问题。则应该是软件部分即程序方面的问题。需要检查程序。首先检查红外接收部分,用示波器检查红外接收管的输出口或是INT0口的波形是否正确。红外接收部分没有问题后再调试电机部分,看电机是否能按照遥控要求那样转动。然后是超声波部分,主要看数码管的现实是否正常,还有就是控制按钮是否按要求控制。因为前面已经确定硬件没有问题了,所以,在软件调试的时候可以结合硬件来在线调试,这样很直观,而且发现问题也很容易。表51 测试结果真实距离(m)0.200.501.00
37、2.00测得距离(m)0.210.520.982.03总结由于时间和其它客观上的原因,此次设计没有做出温度补偿。但是对设计有一个很好的理论基础。设计的最终结果是使超声波测距模块能够产生超声波,实现超声波的发送与接收,从而实现利用超声波方法测量物体间的距离。以数字的形式显示测量距离。并通过蜂鸣器,指示灯进行相应的报警。超声波测距的原理是利用超声波的发射和接受,根据超声波传播的时间来计算出传播距离。实用的测距方法有两种,一种是在被测距离的两端,一端发射,另一端接收的直接波方式,适用于身高计;一种是发射波被物体反射回来后接收的反射波方式,适用于测距仪。此次设计采用反射波方式。超声波测距仪硬件电路的设
38、计主要包括单片机系统及显示报警电路、超声波发射电路和超声波检测接收电路三部分。单片机采用STC89C52或其兼容系列。采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P1.0端口输出超声波换能器所需的40kHz的方波的控制信号,并通过NE555芯片产生。利用外中断0口监测超声波接收电路输出的返回信号。超声波发射电路主要由反相器74LS04和超声波发射换能器T构成,单片机P1.0端口输出的40kHz的方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极,用这种推换形式将方波信号加到超声波换能器的两端,可以提高超声波的发射强
39、度。输出端采两个反向器并联,用以提高驱动能力。上位电阻R1O、R11一方面可以提高反向器74LS04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡时间。压电式超声波换能器是利用压电晶体的谐振来工作的。超声波换能器内部有两个压电晶片和一个换能板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片会发生共振,并带动共振板振动产生超声波,这时它就是一个超声波发生器;反之,如果两电极问未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收换能器。超声波发射换能器与接收换能器在结构上稍有不同,使用时应分清器件上的标志。超声波检测接收电路主要是由集成电路CX20106A组成,它是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控常用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45074-2024公共机构废旧商品回收体系管理规范
- 课堂纪律与规范管理措施计划
- 许昌学院《数据库原理与技术实验》2023-2024学年第一学期期末试卷
- 融资渠道的选择与管理计划
- 生物学科资源共享平台建设计划
- 项目启动会议总结计划
- 期权开仓授权协议三篇
- 餐饮行业服务质量提升的个人计划
- 信阳师范大学《数据结构实验》2021-2022学年第一学期期末试卷
- 西南医科大学《单片机原理与应用》2022-2023学年第一学期期末试卷
- 宋小宝杨树林宋晓峰小品《甄嬛后传》年会台词剧本完整版欢乐喜剧人
- 新生儿科医师晋升副高(正高)职称病例分析专题报告三篇
- (完整版)小学生24点习题大全(含答案)
- 山羊胚胎生产及冷冻保存技术规范
- 长沙高铁南站广场规划方案
- 《银行厅堂管理》课件2
- 有限空间作业台账
- (完整word版)现代汉语常用词表
- 医德医风考试试题及答案
- 直肠癌放疗的护理
- 危险化学品安全评估表
评论
0/150
提交评论