新人教版六年级上册数学知识点分类汇总_第1页
新人教版六年级上册数学知识点分类汇总_第2页
新人教版六年级上册数学知识点分类汇总_第3页
新人教版六年级上册数学知识点分类汇总_第4页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一单元分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。3、为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(二)、规律:(乘法中比较大小时)一个数( 0 除外)乘大于1 的数,积大于这个数。一个数( 0 除外)乘小于1 的数( 0 除外),积小于这个数。一个数( 0 除外)乘1,积等于这个数。(三)、分数混合运算的运算顺序和整数的运算顺序相同。(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交

2、换律:a × b=b × a乘法结合律:( a × b )×c=a × ( b × c )乘法分配律:( a + b )× c=a c + b ca c + b c = ( a + b )× c常见乘法计算(敏感数字):25× 4 100125× 8 1000加法交换律简算例子加法结合律简算例子乘法交换律简算例子乘法结合律简算例子0.875+ 23 +18721=8 +3 +8712=8 +8 +32=1+ 3含加法交换律与结合律2110.875+ 3 +8 +37211=8 +3 +8 +37

3、121=8+8+ 3+37121= (8+8)+ (3+3)=1+1乘法分配律提取式9101 ×0.9-10 ×199×1=101 × -101099=101 ×-1 ×10109=(101-1)×1021+0.85163+0.4 ×33×23×0.375 ×423=2+14=2531634+5×33×=23× ×5283=2+(1+4)=22=23316)3455× ×33×(×5832=3 +1=1&#

4、215;3=23 ×2含乘法交换律与结合律数字换减法式数字换加法式29167590.375 × ××35×101 ×73293610=329167= (36-1)5= (100 +1)98×××××73293610=31629755998×××=36 ×-1 ×=100 ×+1×372936361010316)×(2975=1+9= (×× )=5-108372936=2×1乘

5、法分配律提取式乘法分配律 (添项 )乘法分配律 (添项 )95.5÷ 1.6-15.5÷ 1.6101 ×0.9-9551052× +29 × -0.62588=(95.5-15.5)÷ 1.69-9555=101 ×10=52× +29× -81088=80 ÷ 1.699555=101 ×-1 ×=52× +29× -1 ×1010888=800÷ 16=(101-1)95×=(52 +29 -1)×108995

6、=100 ×=100 ×=80 ×10108减法的性质简算例子减法的性质简算例子减法的性质简算例子数字换乘法式5372718-8 -0.37514 -16 -0.75125-(16 +0.4)0.56 ×12553373272=18- 8 -8=14 - 16-4=125 -(16 +5 )=0.7 ×0.8 ×12553337227=18- (8+8)=14-4 -16=12 5-5 -16=0.7 ×(0.8 ×125)77=18-1=1- 16=12- 16=0.7 ×100除法的性质简算例子除法的

7、性质简算例子除法的性质简算例子数字换乘法式3200÷ 2.5÷ 0.42700÷2.5÷ 2.75900÷ (2.5 × 5.9)33333× 33333=3200÷ (2.5× 0.4)=2700÷ 2.7÷ 2.5=5900 ÷ 5.9÷ 2.5=11111× 3× 33333=3200÷ 1=1000 ÷ 2.5=1000÷ 2.5=11111× 99999同级运算中,第一个数不能动,后面的数可以带着

8、符号搬家=11111× (100000-1)27227113 +16 -3250÷0.8 ×0.413 -16 +329×0.25÷ 0.29227217=13 -3 +16=250× 0.4÷ 0.8=13 +3 -16=29 ÷ 0.29 ×0.2577=1+16=100÷ 0.8=2- 16=100 ×0.25二、分数乘法的解决问题(如果单位 1 是已知的 ,要求它的几分之几,就用乘法)1、找单位“ 1”:在分率句中分率的前面;或“占”、“是”、“比”的后面2、求一个数的几倍:一

9、个数×几倍;求一个数的几分之几是多少:一个数×几分之几。3、写数量关系式技巧:(1)“的” 相当于“×”“占”、“是”、“比”相当于“= ”(2)分率前是“的” :单位“ 1”的量×分率 =分率对应量(3)分率前是“多或少”的意思:单位“ 1”的量×( 1 + -分率) =分率对应量第二单元位置与方向1 位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。以谁为参照物,就以谁为观测点。2 东偏北 30。也可说成北偏东 60。,但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。3 确定一个物体的准确位置,只知道方向或距离是不可

10、以的,要同时知道这两个条件才行。4 根据方向和距离确定物体位置的方法:( 1)确定好方向并用量角器测量出被测物体所在的方向(角度);( 2)用直尺测量出被测物体和观测点之间的图上距离,结合单位长度计算出实际距离;( 3)根据方向(角度)和距离准确判断或描述被测物体的位置。5 要标出物体的位置必须先确定方向,再确定在这一方向上的距离。6 绘制平面图时,要根据实际距离确定好单位长度,即代表多长距离。7 在平面图上标出物体位置的方法:先确定方向,再以选定的单位长度为基准来确定距离,最后找出物体的具体位置,标上名称。8 描述物体的位置与观测点有关,观测点不同,物体位置的描述就不同。两地的位置具有相对性

11、,方向相反(其夹角度数不变) ,距离相同。9 两地的位置关系具有相对性,以这;两个不同地点为观测点描述对方所在的方向时,方向正好相反(甲在乙东偏南30°100 米,则乙在甲西偏北30° 100 米)10 描述路线图时,要先按行走路线确定每一个观测点,然后以每一个观测点为参照物,再描述到下一个目标所行走的方向和路程。11 在平面图上确定物体的位置与方向关键要做到三点:( 1)确定好观测点及单位长度;( 2)找准方向;( 3)线段上每一段的长度要与单位长度统一。12 以谁为观测点就以谁为中心画出方向标,然后判断出另一点所在的方向和距离13 绘制路线图的步骤画出 北 ,确定方向标

12、和单位长度比例尺()确定起点的位置。根据描述,从起点出发,找好方向和距离,一段一段地画。画每一段都要以每一段新的起点为观测点以谁为观测点,就以谁为中心画出“十字”方向标,然后判断下一点的方向和距离。标出数据、名称、角度。(绘制的路线图只有一条线,所作的线是首尾相连的)第三单元分数除法1、倒数的意义:乘积是 1 的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。( 2)、求整数的倒数:把整数看做分母是分数,再交换分子分母的位置。( 3)、求带分数的倒数:把带分数化为假分数,再

13、求倒数。(4)、求小数的倒数:把小数化为分数,再求倒数。3、 1 的倒数是1; 0 没有倒数。因为 1× 1=1; 0 乘任何数都得0, (分母不能为1 的0)11ba4、对于任意数a(a 0),它的倒数为a。非零整数a 的倒数为a。分数a的倒数是b5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。2、分数除法的计算法则:除以一个不为0 的数,等于乘这个数的倒数。3、 规律(分数除法比较大小时):当除数大于1,商小于被除数;当除数小于1(不等于),

14、商大于被除数;当除数等于1,商等于被除数。4、 “ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。二、分数除法解决问题(已知单位“ 1”的几分之几是多少,单位“1”的量是要求的问题。就用除法)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的” :单位“ 1”的量×分率 =分率对应量(2)分率前是“多或少”的意思:单位“ 1”的量×( 1 +-分率) =分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为,用方程解答。(2)算术(用除法) :分率对应量÷对应分率=单位“ 1”

15、的量3、求一个数是另一个数的几分之几:就一个数÷另一个数4、求一个数比另一个数多(少)几分之几:求多几分之几:大数÷小数 1 求少几分之几: 1 -小数÷大数或求多几分之几 (大数 - 小数 )÷比后面的数 求少几分之几 (大数 -小数 )÷比后面的数求的不是单位“ 1 ”单位“ 1 ”的量×对应分率单位“ 1”的量×对应分率200×1200×25%4200×( 1+1)200× ( 1+ 25%)4200×( 1-1)200× ( 1-25%)4求的是单位“ 1

16、”分率对应量÷ 对应分率分率对应量÷ 对应分率200÷1200÷25%41200÷(1+ 4 )200÷ ( 1+ 25%)1200÷(1- 4 )200÷ ( 1-25%)第四单元比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如15: 10 = 15 ÷10=(比值通常用分数表示,也可以用小数或整数表示)前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。也可以表

17、示两个不同量的比,得到一个新量。例:路程÷速度 =时间。4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。5、根据分数与除法的关系,两个数的比也可以写成分数形式。6、比和除法、分数的联系:比前项比号 “:”后 项比值除 法被除数除号“÷”除 数商分 数分子分数线“”分 母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。8、根据比与除法、分数的关系,可以理解比的后项不能为0。体育比赛中出现两队的分是2:0 等,这只是一种记分的形式,不表示两个数相除的关系。(二)

18、、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0 除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0 除外),分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外 ),比值不变。2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、根据比的基本性质,可以把比化成最简单的整数比。4.化简比:用比的前项和后项同时除以它们的最大公因数。两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。两个小数的比:向右移动小数点的位置,先化成整数比再化简。(2)用求比值的方法

19、。注意: 最后结果要写成比的形式。如:15 10 = 15÷ 10 = 325按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。如:已知两个量之比为 a : b ,则设这两个量分别为ab6、 路程一定, 速度比和时间比成反比。 (如:路程相同, 速度比是 4:5,时间比则为5:4)工作总量一定,工作效率和工作时间成反比。(如:工作总量相同,工作时间比是3:2,工作效率比则是2: 3)第五单元圆1、圆的定义:圆是由曲线围成的一种平面图形。2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O 表示。它到圆上任意一点的距离都相等3、

20、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r 表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d 表示。直径是一个圆内最长的线段。5、圆心确定圆的位置,半径确定圆的大小。6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。7在同圆或等圆内,直径的长度是半径的2 倍,半径的长度是直径的12用字母表示为: d 2r 或 r 1d28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)9

21、、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。10、只有 1 一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。只有 2 条对称轴的图形是:长方形只有 3 条对称轴的图形是:等边三角形只有 4 条对称轴的图形是:正方形 ;有无数条对称轴的图形是:二、圆的周长圆、圆环。1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C 表示。2、圆周率实验:在圆形纸片上做个记号,与直尺0 刻度对齐,在直尺上滚动一周,求出圆的周长。发现一般规律,就是圆周长与它直径的比值是一个固定数( )。3圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母 (p

22、ai) 表示。(1)、一个圆的周长总是它直径的3 倍多一些,这个比值是一个固定的数。圆周率 是一个无限不循环小数。在计算时,一般取 3.14。(2)、在判断时,圆周长与它直径的比值是 倍,而不是 3.14 倍。(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。4、圆的周长公式:C= dd = C ÷ 或 C=2 rr = C ÷ 2÷ 5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2计算方法: 2 r ÷

23、 2即 r(2)半圆的周长:等于圆的周长的一半加直径。计算方法: r 2r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。用字母 S 表示。2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。3、圆面积公式的推导:( 1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。( 2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。( 3)、拼出的图形与圆的周长和半径的关系。圆的半径=长方形的宽圆的周长的一半=长方形的长因为:长方形面积=长×宽所以:圆的面积= 圆周长的一半

24、5;圆的半径S圆=r×r圆的面积公式:S圆=r24、环形的面积:一个环形,外圆的半径是R,内圆的半径是r。( R r环的宽度)S环= R2 2或S环= ( R22)5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。例如:在同一个圆里,半径扩大3 倍,那么直径和周长就都扩大3 倍,而面积扩大9 倍。6、两个圆:半径比= 直径比= 周长比;而面积比等于这比的平方。例如:两个圆的半径比是2 3,那么这两个圆的直径比和周长比都是2 3,而面积比是497、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4 8、当长方形,正方形,圆

25、的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。9、确定起跑线:(1)、每条跑道的长度= 两个半圆形跑道合成的圆的周长+ 两个直道的长度。(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)(3)、每相邻两个跑道相隔的距离是:2× ×跑道的宽度(4)、当一个圆的半径增加厘米时,它的周长就增加 厘米; 当一个圆的直径增加厘米时,它的周长就增加 厘米。C 长 =(a+b) ×2a=C÷2-bb=C÷ 2-aC 正=a× 4a=C÷

26、4S 长=a× ba=S÷bb=S÷ aS 正=a× aS 圆 = r2C 圆=dC 圆=2 rr=d ÷2r=C ÷ 2÷ d=C÷ 圆周长的一半 = rr=圆周长的一半 ÷ 半圆周长 =( +2)rr=半圆周长 ÷ ( +2)S 环= (R2 2)L=r×nCnS=n弧180扇=r× 180 +2r扇360 r211、常用各 值结果: = 3.14 2 = 6.28 3 = 9.424 = 12.565 = 15.76 = 18.84 7 = 21.988 = 25.12

27、 9 = 28.26 10 = 31.416 = 50.24 25 = 78.5 36 = 113.0449=153.8664 = 200.9681= 254.34100 = 31412、常用平方数结果112= 121122= 144132 = 169142 = 196152= 225162= 256172= 289182= 324192= 361202=400第六单元百分数(一)一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几。百分数是指两个数的比,因此也叫百分率或百分比。2、 千分数:表示一个数是另一个数的千分之几。3、 百分数和分数的主要联系与区别:( 1)联系:都

28、可以表示两个量的倍比关系。( 2) 区别:、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0 以外的自然数。4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“”来表示。二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。(二)百分数的和分数的互化1、百分数化成分数:先把百分数化成分数,先把百

29、分数改写成分母是否100 的分数,能约分要约成最简分数。2、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是100 的分数,再写成百分数形式。先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(三)常见的分数与小数、百分数之间的互化1132 =0.5=50%4 = 0.25 = 25%4= 0.75 = 75%1 =0.2=20%2 =0.4=40%3= 0.6 = 60%4 =0.8=80%555513578 = 0.125 = 12.5%8 = 0.375 = 37.5%8 = 0.625 = 62.5%8 = 0.875 = 87.5%111116 =

30、0.0625 = 6.25%20 =0.05= 5 25 =0.04= 4 50 =0.02=2 三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:合格率 =合格产品数 /产品总数× 100%发芽率 = 发芽种子数 /种子总数× 100%出勤率 =出勤人数 /总人数× 100%达标率 =达标人数 /总人数× 100%成活率 =成活数量 /总数量× 100%出粉率 =粉的重量 /出粉物的重量× 100%出米率 =米的数量 /出米物的重量出油率 =油的重量 /出油物的重量数× 100%烘干率 =烘干后的重量 /烘干

31、前的重量×100%含水率 =(烘干前的重量 -烘干后的重量 )/ 烘干前的重量×100%含水率=( 水的质量 / 水与物体的总质量) × 100%含糖率=糖的重量/糖水的重量× 100%含盐率=盐的重量/盐水的重量×100%近视率 =近视人数 /总人数× 100%命中率 =命中的次数 / 投篮次数× 100%百分率表示两个数的比,是没有单位名称的一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100% ,完成率、 增长了百分之几等可以超过100%。(一般出粉率在 70、80%,出油率在30、40%

32、 。)2、已知单位“ 1”的量,求单位“ 1”的百分之几是多少的问题(用乘法):数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的” :单位“ 1”的量×分率 =分率对应量(2)分率前是“多或少”的意思:单位“ 1”的量×( 1+- 分率) =分率对应量3、未知单位“1”的量(用除法) ,已知单位“ 1”的百分之几是多少,求单位“1”。解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为,用方程解答。(2)算术(用除法) :分率对应量÷对应分率=单位“ 1”的量4、求一个数比另一个数多(少)百分之几的问题:两个数的相差量÷单位“

33、1”的量 × 100%求多几分之几 (大数 -小数 )÷比后面的数求少几分之几 (大数 -小数 )÷比后面的数第七单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论