二次根式单元复习_第1页
二次根式单元复习_第2页
二次根式单元复习_第3页
二次根式单元复习_第4页
二次根式单元复习_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二二 次次 根根 式式 复复 习习二二 次次 根根 式式三个概念两个性质两个公式四种运算最简二次根式最简二次根式同类二次根式同类二次根式有理化因式有理化因式baba)0, 0(ba0, 0babaab1、2、加加 、减、乘、除、减、乘、除知识结构知识结构2、1、02aaa aa2 0aa0aa-不要求,只需了解不要求,只需了解a0a 00a ()2()aa2,0,0a aa aaa题型题型1:确定二次根式中被开方数所含字母的取值范围确定二次根式中被开方数所含字母的取值范围.1 1. .(20052005. .吉林)当吉林)当 _时,时, 有意义。有意义。xx32.(2005.2.(2005.青

2、岛青岛) +) +a4 3. 3.求下列二次根式中字母的取值范围求下列二次根式中字母的取值范围x x3 31 15 5x x解得解得 - 5x- 5x3 3解:解: 0 0 x x- -3 30 05 5x x说明:二次根式被开方数说明:二次根式被开方数不小于不小于0,所以求二次根,所以求二次根式中字母的取值范围常转式中字母的取值范围常转化为不等式(组)化为不等式(组) 33a=4a=44a有意义的条件是有意义的条件是 _ _ . .题型题型2:二次根式的非负性的应用二次根式的非负性的应用.4.4.已知:已知: + =0,+ =0,求求 x-y x-y 的值的值. .yx24x5.(2005.

3、5.(2005.湖北黄冈市湖北黄冈市) )已知已知x,yx,y为实数为实数, ,且且 +3(y-2)+3(y-2)2 2 =0, =0,则则x-yx-y的值为的值为( ( ) ) A.3 B.-3 C.1 D.-1 A.3 B.-3 C.1 D.-11x解:由题意,得解:由题意,得 x-4=0 x-4=0 且且 2x+y=02x+y=0解得解得 x=4,y=-8x=4,y=-8x-y=4-(-8)= 4+ 8 =12x-y=4-(-8)= 4+ 8 =12D D抢答抢答: :判断下列二次根式是否是最简二次根式判断下列二次根式是否是最简二次根式, ,并说明理由。并说明理由。621) 6 ()()

4、 5 (75. 0) 4 () 3 () 2 (50) 1 (2222babayxbca满足下列两个条件的二次根式满足下列两个条件的二次根式,叫做最简二次根式叫做最简二次根式(1)被开方数中不含分母)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式)被开方数中不含能开得尽方的因数或因式2(3)_1x 2(1)_x2(2)2xx2(7)17xx .922(4)(1)xx2222()()()()a b ca b cb a cc b a 22()aa0a 0a 0a a22()aa0a 0a 0a a22( 5)( 5)22(10)( 3 3) 7.计算或化简计算或化简: _62621

5、6_452232163 38.化简下列各式化简下列各式242322(3)(32 ))(31312271 1) )2 23 3) )( (2 22 2( (9、计算下列各题,并概括二次根式的、计算下列各题,并概括二次根式的 运算的一般运算的一般 步骤:步骤: 19 37 125 4811212434 0.58333 22 33 22 314abbab10、计算:、计算: 5491.11 4117472. 18 6 535.1611.计算计算:)4(2424) 1 (222acbaacbbaacbb)24)(24)(2(22aacbbaacbb33)257()725)(3(12、(、(1)判断下列

6、各式是否成立?你认为成立的,请在括号里)判断下列各式是否成立?你认为成立的,请在括号里 打打 “”,不成立的,请在括号里打,不成立的,请在括号里打 “” 24552455,15441544833833,322322(2)你判断完以上各题之后,能猜想这类式子具有什么)你判断完以上各题之后,能猜想这类式子具有什么 规律?规律?(3)试用数学知识说明你所提出的猜想是正确的吗?)试用数学知识说明你所提出的猜想是正确的吗?探索性练习:探索性练习:22ab ,20a ,02b22(2)ab原 式22( 22)24拓展拓展1 1设设a a、b b为实数为实数, ,且且| 2 -a|+ b-2 =0| 2 -

7、a|+ b-2 =0 22ab ,22(1)求a -2 2a+2+b 的值. 12a0,b202ab20解:而11221若若a为底为底,b为腰为腰,此时底边上的高为此时底边上的高为2142721422222三角形的面积为三角形的面积为(2)(2)若满足上式的若满足上式的a,ba,b为等腰三角形的两边为等腰三角形的两边, ,求这求这个等腰三角形的面积个等腰三角形的面积. .拓展拓展1 1设设a a、b b为实数为实数, ,且且| 2 -a|+ b-2 =0| 2 -a|+ b-2 =0 22ab ,解解: :若若a a为腰为腰,b,b为底为底, ,此时底边上的高为此时底边上的高为11472222

8、三角形的面积为三角形的面积为2211 ()22(1)求a -2 2a+2+b 的值.2022x 22 33xx59xx4232aa.21解答题解答题:。yx,yx11232232) 1 (求已知。aaaaaa的值及求已知11, 31)2(nn1)3( 你能比较?nn的大小吗和1。x并求最大整数解解不等式, 1)23()4(A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示

9、的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展2 2A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展2 2A AB BP PD DC C若点若点P P

10、为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展2 2A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_A

11、D=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展2 2A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展2

12、 2A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展2 2A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BC

13、CDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展3 3 设设DP=aDP=a, ,请用含请用含a a的代数式表的代数式表示示APAP,BPBP。则。则AP=_AP=_,BP=_BP=_。24a 2(3 ) 1a 当当a=a=1 1 时,时,则则PA+PBPA+PB=_,=_,2 5113当当a=3,a=3,则则PA+PB=_PA+PB=_ PA+PBPA+PB是否存在一个最小值?是否存在一个最小值?(1)二次根式的加减法:通常先把各个二次二次根式的加减法:通常先把各个二次根式化成最简二次根式,在合并同类二次根式化成最简二次根式,在合并同类二次根式根式(2)、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论