高等数学大学课件 106_第1页
高等数学大学课件 106_第2页
高等数学大学课件 106_第3页
高等数学大学课件 106_第4页
高等数学大学课件 106_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十章第十章 微分方程微分方程 第六节第六节 可降阶的高阶微分方程可降阶的高阶微分方程),(yxfy 一、一、 型的微分方程型的微分方程 二、二、 型的微分方程型的微分方程 )()(xfyn ),(yyfy 三、三、 型的微分方程型的微分方程 一、一、)()(xfyn对方程两边积分对方程两边积分即即1)1(d)(cxxfyn 再积分再积分2)2(d cxyn1d)(cxxfxd xxfd)(依次通过依次通过 n 次积分次积分, 可得含可得含 n 个任意常数的通解个任意常数的通解 .21cxc型的微分方程型的微分方程 例例1. .cos2xeyx 求解求解解解: 12coscxdxeyx 12s

2、in21cxex xxedxcxey21241)sin21 ( dxcxcxeyx)cos41(212xsin 2122181xcex 32cxc xcos 21cxc ,00tx例例2. 质量为 m 的质点受力f 的作用沿 ox 轴作直线运动,在开始时刻,)0(0ff随着时间的增大 , 此力 f 均匀地减直到 t = t 时 f(t) = 0 . 如果开始时质点在原点, 解解: 据题意有)(dd22tftxm)1(0ttf 0dd0ttxt = 0 时设力 f 仅是时间 t 的函数: f = f (t) . 小,求质点的运动规律. 初初速度为0, 且对方程两边积分, 得 120)2(ddct

3、ttmftx利用初始条件, 01c得于是)2(dd20tttmftx两边再积分得2320)62(ctttmfx再利用00tx, 02c得故所求质点运动规律为)3(2320tttmfx0dd0ttx),(yxfy 型的微分方程(特点:不显含型的微分方程(特点:不显含y ) 设, )(xpy ,py 则原方程化为一阶方程),(pxfp 设其通解为),(1cxp则得),(1cxy再一次积分, 得原方程的通解21d),(cxcxy二、二、例例3. 求解yxyx 2)1(2,10 xy3 0 xy解解: ),(xpy 设,py 则代入方程得pxpx2)1(2分离变量)1(d2d2xxxpp积分得,ln)

4、1(lnln12cxp)1(21xcp即,3 0 xy利用, 31c得于是有)1(32xy两端再积分得233cxxy利用,10 xy, 12c得133xxy因此所求特解为例例4. 绳索仅受重力作用而下垂,解解: 取坐标系如图. 考察最低点 a 到sg( : 密度, s :弧长)弧段重力大小按静力平衡条件, 有,coshtmsgoyx)(gha其中sgtsinyxyxd102a1故有211yay 设有一均匀, 柔软的绳索, 两端固定, 问该绳索的平衡状态是怎样的曲线 ? 任意点m ( x, y ) 弧段的受力情况: t a 点受水平张力 hm 点受切向张力t两式相除得ha,1tansa msgo

5、yxha211yya , aoa 设则得定解问题: , 0ayx0 0 xy),(xpy 令,ddxpy 则原方程化为pdxad1两端积分得,)1ln(12caxpp0 0 xy由, 01c得则有axysh两端积分得,ch2cayax, 0ayx由02c得故所求绳索的形状为axaych)(2axaxeea悬悬 链链 线线a21p三、三、),(yyfy 型的微分方程(特点:不显含型的微分方程(特点:不显含x) 令),(ypy xpydd 则xyypddddyppdd故方程化为),(ddpyfypp设其通解为),(1cyp即得),(1cyy分离变量后积分, 得原方程的通解21),(dcxcyy例例

6、5. 求解.02 yyy代入方程得,0dd2 pyppyyyppdd即两端积分得,lnlnln1cyp,1ycp 即ycy1(一阶线性齐次方程)故所求通解为xcecy12解解:),(ypy 设xpydd 则xyypddddyppdd例例6. 解初值问题解初值问题解解: 令02 yey,00 xy10 xy),(ypy ,ddyppy 则代入方程得yeppydd2积分得1221221cepy利用初始条件, 0100 xyyp, 01c得根据yepxydd积分得,2cxey, 00 xy再由12c得故所求特解为xey1得为曲边的曲边梯形面积上述两直线与 x 轴围成的三角形面例例7.)0()(xxy

7、设函数二阶可导, 且, 0)( xy)(xyy 过曲线上任一点 p(x, y) 作该曲线的切线及 x 轴的垂线,1s区间 0, x 上以,2s记为)(xy, 1221 ss且)(xyy 求解解:, 0)(, 1)0(xyy因为. 0)(xy所以于是 cot2121ys yy222s)(xyy 设曲线在点 p(x, y) 处的切线倾角为 ,满足的方程 ., 1)0(,1)0( yy积记为ttysxd)(02 pxy1s1oyx再利用 y (0) = 1 得利用,1221 ss得xttyyy021d)(两边对 x 求导, 得2)( yyy 定解条件为)0(, 1)0(yy),(ypy 令方程化为,

8、ddyppy 则yyppdd,1ycp 解得利用定解条件得,11c, yy 再解得,2xecy , 12c故所求曲线方程为xey 2ddpyppy12spxy1s1oyx内容小结内容小结可降阶微分方程的解法 降阶法)(. 1)(xfyn逐次积分),(. 2yxfy 令, )(xpy xpydd 则),(. 3yyfy 令, )(ypy yppydd 则思考与练习思考与练习1. 方程)(yfy 如何代换求解 ?答答: 令)(xpy 或)(ypy 一般说, 用前者方便些. 均可. 有时用后者方便 . 例如,2)(yey 2. 解二阶可降阶微分方程初值问题需注意哪些问题 ?答答: (1) 一般情况 , 边解边定常数计算简便.(2) 遇到开平方时, 要根据题意确定正负号.例例6例例7思考题思考题求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论